|
| 1 | +/// Naive Bayes classifier for classification tasks. |
| 2 | +/// This implementation uses Gaussian Naive Bayes, which assumes that |
| 3 | +/// features follow a normal (Gaussian) distribution. |
| 4 | +/// The algorithm calculates class priors and feature statistics (mean and variance) |
| 5 | +/// for each class, then uses Bayes' theorem to predict class probabilities. |
| 6 | +
|
| 7 | +pub struct ClassStatistics { |
| 8 | + pub class_label: f64, |
| 9 | + pub prior: f64, |
| 10 | + pub feature_means: Vec<f64>, |
| 11 | + pub feature_variances: Vec<f64>, |
| 12 | +} |
| 13 | + |
| 14 | +fn calculate_class_statistics( |
| 15 | + training_data: &[(Vec<f64>, f64)], |
| 16 | + class_label: f64, |
| 17 | + num_features: usize, |
| 18 | +) -> Option<ClassStatistics> { |
| 19 | + let class_samples: Vec<&(Vec<f64>, f64)> = training_data |
| 20 | + .iter() |
| 21 | + .filter(|(_, label)| (*label - class_label).abs() < 1e-10) |
| 22 | + .collect(); |
| 23 | + |
| 24 | + if class_samples.is_empty() { |
| 25 | + return None; |
| 26 | + } |
| 27 | + |
| 28 | + let prior = class_samples.len() as f64 / training_data.len() as f64; |
| 29 | + |
| 30 | + let mut feature_means = vec![0.0; num_features]; |
| 31 | + let mut feature_variances = vec![0.0; num_features]; |
| 32 | + |
| 33 | + // Calculate means |
| 34 | + for (features, _) in &class_samples { |
| 35 | + for (i, &feature) in features.iter().enumerate() { |
| 36 | + if i < num_features { |
| 37 | + feature_means[i] += feature; |
| 38 | + } |
| 39 | + } |
| 40 | + } |
| 41 | + |
| 42 | + let n = class_samples.len() as f64; |
| 43 | + for mean in &mut feature_means { |
| 44 | + *mean /= n; |
| 45 | + } |
| 46 | + |
| 47 | + // Calculate variances |
| 48 | + for (features, _) in &class_samples { |
| 49 | + for (i, &feature) in features.iter().enumerate() { |
| 50 | + if i < num_features { |
| 51 | + let diff = feature - feature_means[i]; |
| 52 | + feature_variances[i] += diff * diff; |
| 53 | + } |
| 54 | + } |
| 55 | + } |
| 56 | + |
| 57 | + let epsilon = 1e-9; |
| 58 | + for variance in &mut feature_variances { |
| 59 | + *variance = (*variance / n).max(epsilon); |
| 60 | + } |
| 61 | + |
| 62 | + Some(ClassStatistics { |
| 63 | + class_label, |
| 64 | + prior, |
| 65 | + feature_means, |
| 66 | + feature_variances, |
| 67 | + }) |
| 68 | +} |
| 69 | + |
| 70 | +fn gaussian_log_pdf(x: f64, mean: f64, variance: f64) -> f64 { |
| 71 | + let diff = x - mean; |
| 72 | + let exponent_term = -(diff * diff) / (2.0 * variance); |
| 73 | + let log_coefficient = -0.5 * (2.0 * std::f64::consts::PI * variance).ln(); |
| 74 | + log_coefficient + exponent_term |
| 75 | +} |
| 76 | + |
| 77 | +pub fn train_naive_bayes(training_data: Vec<(Vec<f64>, f64)>) -> Option<Vec<ClassStatistics>> { |
| 78 | + if training_data.is_empty() { |
| 79 | + return None; |
| 80 | + } |
| 81 | + |
| 82 | + let num_features = training_data[0].0.len(); |
| 83 | + if num_features == 0 { |
| 84 | + return None; |
| 85 | + } |
| 86 | + |
| 87 | + // Verify all samples have the same number of features |
| 88 | + if !training_data |
| 89 | + .iter() |
| 90 | + .all(|(features, _)| features.len() == num_features) |
| 91 | + { |
| 92 | + return None; |
| 93 | + } |
| 94 | + |
| 95 | + // Get unique class labels |
| 96 | + let mut unique_classes = Vec::new(); |
| 97 | + for (_, label) in &training_data { |
| 98 | + if !unique_classes |
| 99 | + .iter() |
| 100 | + .any(|&c: &f64| (c - *label).abs() < 1e-10) |
| 101 | + { |
| 102 | + unique_classes.push(*label); |
| 103 | + } |
| 104 | + } |
| 105 | + |
| 106 | + let mut class_stats = Vec::new(); |
| 107 | + |
| 108 | + for class_label in unique_classes { |
| 109 | + if let Some(mut stats) = |
| 110 | + calculate_class_statistics(&training_data, class_label, num_features) |
| 111 | + { |
| 112 | + stats.class_label = class_label; |
| 113 | + class_stats.push(stats); |
| 114 | + } |
| 115 | + } |
| 116 | + |
| 117 | + if class_stats.is_empty() { |
| 118 | + return None; |
| 119 | + } |
| 120 | + |
| 121 | + Some(class_stats) |
| 122 | +} |
| 123 | + |
| 124 | +pub fn predict_naive_bayes(model: &[ClassStatistics], test_point: &[f64]) -> Option<f64> { |
| 125 | + if model.is_empty() || test_point.is_empty() { |
| 126 | + return None; |
| 127 | + } |
| 128 | + |
| 129 | + // Get number of features from the first class statistics |
| 130 | + let num_features = model[0].feature_means.len(); |
| 131 | + if test_point.len() != num_features { |
| 132 | + return None; |
| 133 | + } |
| 134 | + |
| 135 | + let mut best_class = None; |
| 136 | + let mut best_log_prob = f64::NEG_INFINITY; |
| 137 | + |
| 138 | + for stats in model { |
| 139 | + // Calculate log probability to avoid underflow |
| 140 | + let mut log_prob = stats.prior.ln(); |
| 141 | + |
| 142 | + for (i, &feature) in test_point.iter().enumerate() { |
| 143 | + if i < stats.feature_means.len() && i < stats.feature_variances.len() { |
| 144 | + // Use log PDF directly to avoid numerical underflow |
| 145 | + log_prob += |
| 146 | + gaussian_log_pdf(feature, stats.feature_means[i], stats.feature_variances[i]); |
| 147 | + } |
| 148 | + } |
| 149 | + |
| 150 | + if log_prob > best_log_prob { |
| 151 | + best_log_prob = log_prob; |
| 152 | + best_class = Some(stats.class_label); |
| 153 | + } |
| 154 | + } |
| 155 | + |
| 156 | + best_class |
| 157 | +} |
| 158 | + |
| 159 | +pub fn naive_bayes(training_data: Vec<(Vec<f64>, f64)>, test_point: Vec<f64>) -> Option<f64> { |
| 160 | + let model = train_naive_bayes(training_data)?; |
| 161 | + predict_naive_bayes(&model, &test_point) |
| 162 | +} |
| 163 | + |
| 164 | +#[cfg(test)] |
| 165 | +mod tests { |
| 166 | + use super::*; |
| 167 | + |
| 168 | + #[test] |
| 169 | + fn test_naive_bayes_simple_classification() { |
| 170 | + let training_data = vec![ |
| 171 | + (vec![1.0, 1.0], 0.0), |
| 172 | + (vec![1.1, 1.0], 0.0), |
| 173 | + (vec![1.0, 1.1], 0.0), |
| 174 | + (vec![5.0, 5.0], 1.0), |
| 175 | + (vec![5.1, 5.0], 1.0), |
| 176 | + (vec![5.0, 5.1], 1.0), |
| 177 | + ]; |
| 178 | + |
| 179 | + // Test point closer to class 0 |
| 180 | + let test_point = vec![1.05, 1.05]; |
| 181 | + let result = naive_bayes(training_data.clone(), test_point); |
| 182 | + assert_eq!(result, Some(0.0)); |
| 183 | + |
| 184 | + // Test point closer to class 1 |
| 185 | + let test_point = vec![5.05, 5.05]; |
| 186 | + let result = naive_bayes(training_data, test_point); |
| 187 | + assert_eq!(result, Some(1.0)); |
| 188 | + } |
| 189 | + |
| 190 | + #[test] |
| 191 | + fn test_naive_bayes_one_dimensional() { |
| 192 | + let training_data = vec![ |
| 193 | + (vec![1.0], 0.0), |
| 194 | + (vec![1.1], 0.0), |
| 195 | + (vec![1.2], 0.0), |
| 196 | + (vec![5.0], 1.0), |
| 197 | + (vec![5.1], 1.0), |
| 198 | + (vec![5.2], 1.0), |
| 199 | + ]; |
| 200 | + |
| 201 | + let test_point = vec![1.15]; |
| 202 | + let result = naive_bayes(training_data.clone(), test_point); |
| 203 | + assert_eq!(result, Some(0.0)); |
| 204 | + |
| 205 | + let test_point = vec![5.15]; |
| 206 | + let result = naive_bayes(training_data, test_point); |
| 207 | + assert_eq!(result, Some(1.0)); |
| 208 | + } |
| 209 | + |
| 210 | + #[test] |
| 211 | + fn test_naive_bayes_empty_training_data() { |
| 212 | + let training_data = vec![]; |
| 213 | + let test_point = vec![1.0, 2.0]; |
| 214 | + let result = naive_bayes(training_data, test_point); |
| 215 | + assert_eq!(result, None); |
| 216 | + } |
| 217 | + |
| 218 | + #[test] |
| 219 | + fn test_naive_bayes_empty_test_point() { |
| 220 | + let training_data = vec![(vec![1.0, 2.0], 0.0)]; |
| 221 | + let test_point = vec![]; |
| 222 | + let result = naive_bayes(training_data, test_point); |
| 223 | + assert_eq!(result, None); |
| 224 | + } |
| 225 | + |
| 226 | + #[test] |
| 227 | + fn test_naive_bayes_dimension_mismatch() { |
| 228 | + let training_data = vec![(vec![1.0, 2.0], 0.0), (vec![3.0, 4.0], 1.0)]; |
| 229 | + let test_point = vec![1.0]; // Wrong dimension |
| 230 | + let result = naive_bayes(training_data, test_point); |
| 231 | + assert_eq!(result, None); |
| 232 | + } |
| 233 | + |
| 234 | + #[test] |
| 235 | + fn test_naive_bayes_inconsistent_feature_dimensions() { |
| 236 | + let training_data = vec![ |
| 237 | + (vec![1.0, 2.0], 0.0), |
| 238 | + (vec![3.0], 1.0), // Different dimension |
| 239 | + ]; |
| 240 | + let test_point = vec![1.0, 2.0]; |
| 241 | + let result = naive_bayes(training_data, test_point); |
| 242 | + assert_eq!(result, None); |
| 243 | + } |
| 244 | + |
| 245 | + #[test] |
| 246 | + fn test_naive_bayes_multiple_classes() { |
| 247 | + let training_data = vec![ |
| 248 | + (vec![1.0, 1.0], 0.0), |
| 249 | + (vec![1.1, 1.0], 0.0), |
| 250 | + (vec![5.0, 5.0], 1.0), |
| 251 | + (vec![5.1, 5.0], 1.0), |
| 252 | + (vec![9.0, 9.0], 2.0), |
| 253 | + (vec![9.1, 9.0], 2.0), |
| 254 | + ]; |
| 255 | + |
| 256 | + let test_point = vec![1.05, 1.05]; |
| 257 | + let result = naive_bayes(training_data.clone(), test_point); |
| 258 | + assert_eq!(result, Some(0.0)); |
| 259 | + |
| 260 | + let test_point = vec![5.05, 5.05]; |
| 261 | + let result = naive_bayes(training_data.clone(), test_point); |
| 262 | + assert_eq!(result, Some(1.0)); |
| 263 | + |
| 264 | + let test_point = vec![9.05, 9.05]; |
| 265 | + let result = naive_bayes(training_data, test_point); |
| 266 | + assert_eq!(result, Some(2.0)); |
| 267 | + } |
| 268 | + |
| 269 | + #[test] |
| 270 | + fn test_train_and_predict_separately() { |
| 271 | + let training_data = vec![ |
| 272 | + (vec![1.0, 1.0], 0.0), |
| 273 | + (vec![1.1, 1.0], 0.0), |
| 274 | + (vec![5.0, 5.0], 1.0), |
| 275 | + (vec![5.1, 5.0], 1.0), |
| 276 | + ]; |
| 277 | + |
| 278 | + let model = train_naive_bayes(training_data); |
| 279 | + assert!(model.is_some()); |
| 280 | + |
| 281 | + let model = model.unwrap(); |
| 282 | + assert_eq!(model.len(), 2); |
| 283 | + |
| 284 | + let test_point = vec![1.05, 1.05]; |
| 285 | + let result = predict_naive_bayes(&model, &test_point); |
| 286 | + assert_eq!(result, Some(0.0)); |
| 287 | + } |
| 288 | +} |
0 commit comments