Author: Het Bhutak
Email: [email protected]
This workspace contains two complete computer vision systems:
- Human & Animal Detection in Videos
Detects and classifies humans and animals in videos using deep learning. - Industrial/Military OCR System
Extracts and structures text from images of industrial/military stenciled boxes.
.
├── human_animal_detection.py
├── streamlit_app_part_a.py
├── part_a_requirements.txt
├── test_videos/
├── outputs/
├── Human and Animal Detection.v3i.yolov5pytorch/
│ ├── data.yaml
│ ├── train/valid/test/ (images & YOLO labels)
│ └── README.*
├── Part2/
│ ├── ocr_system_part_b.py
│ ├── streamlit_app_part_b.py
│ ├── requirements.txt
│ ├── outputs/
│ └── test_images/
└── industrial_ocr/
├── outputs/
└── test_images/
git clone <repo-url>
cd <repo-folder>pip install -r part_a_requirements.txtpip install -r Part2/requirements.txt- Tesseract OCR Engine
- Windows: Download here
- Linux:
sudo apt-get install tesseract-ocr - Mac:
brew install tesseract
streamlit run streamlit_app_part_a.py- Upload a video in the web UI.
- Process and view annotated results and statistics.
python human_animal_detection.py- Processes all videos in
test_videos/. - Annotated videos saved to
outputs/.
streamlit run Part2/streamlit_app_part_b.py- Upload an image in the web UI.
- Extracts text, shows structured data, and displays annotated images.
python Part2/ocr_system_part_b.py- Processes all images in
Part2/test_images/. - Results saved as JSON and annotated images in
Part2/outputs/.
- Images: JPEG/PNG in
Human and Animal Detection.v3i.yolov5pytorch/train/valid/test/images/ - Labels: YOLOv5 format in
train/valid/test/labels/- Each line:
<class_id> <x_center> <y_center> <width> <height>(normalized) class_id:0= Animal,1= Human
- Each line:
- Images: Place test images in
Part2/test_images/ - Outputs: JSON files and annotated images in
Part2/outputs/
- Annotated Videos:
outputs/annotated_test.mp4 - OCR Results:
Part2/outputs/<image_name>_ocr_result.json - Annotated OCR Images:
Part2/outputs/<image_name>_annotated.jpg -
-
- For best results, use clear, high-resolution videos/images.
- All processing is offline; no data is sent to external servers.
- For any issues, check the console output or Streamlit sidebar tips.