๐ The World's First Relationship-Aware Vector Database (Free Version)
Perfect for Learning, Tutorials, Hackathons, Enterprise POCs and AI Development
- 100 vectors - Perfect tutorial and learning size
- 500 relationships - Rich relationship modeling capability
- ๐ฏ Auto-Dimension Detection - Works with any ML model instantly
- ๐ง Auto-Relationship Detection - Builds intelligent connections automatically
- ๐ช Auto-Optimize Search - quicker search response automatically
- ๐ Auto-Intelligent Knowlege Graph Construction - Builds intelligent knowledge graph construction for connected relationships automatically
- Complete feature set - All 5 relationship types and algorithms
- Multi-hop discovery - 2-degree relationship traversal
- No usage tracking - Complete privacy and freedom
- Production-quality code - Same codebase as enterprise RudraDB
pip install rudradb-opinimport rudradb
import numpy as np
# Test auto-dimension detection
db = rudradb.RudraDB() # No dimension specified!
print(f"๐ฏ Auto-dimension detection: {'โ
Enabled' if db.dimension() is None else 'Manual'}")
# Test with random embedding
test_embedding = np.random.rand(384).astype(np.float32)
db.add_vector("test", test_embedding, {"test": True})
print(f"๐ฏ Auto-detected dimension: {db.dimension()}")
# Verify auto-relationship capabilities
print(f"๐ง Auto-relationship detection: โ
Available")
print(f"๐ Limits: {rudradb.MAX_VECTORS} vectors, {rudradb.MAX_RELATIONSHIPS} relationships")
print(f"๐ RudraDB-Opin {rudradb.__version__} ready with auto-intelligence!")RudraDB-Opin is the only vector database that combines relationship-aware search with revolutionary auto-features that eliminate manual configuration. While traditional databases require complex setup and manual relationship building, RudraDB-Opin automatically detects dimensions, builds intelligent relationships, and optimizes performance.
Zero Configuration Required - Works with any ML model instantly:
import rudradb
import numpy as np
from sentence_transformers import SentenceTransformer
import openai
# โจ NO DIMENSION SPECIFICATION NEEDED!
db = rudradb.RudraDB() # Auto-detects from any model
# Works with Sentence Transformers (384D)
model_384 = SentenceTransformer('all-MiniLM-L6-v2')
text_384 = model_384.encode(["AI transforms everything"])[0]
db.add_vector("st_doc", text_384.astype(np.float32), {"model": "sentence-transformers"})
print(f"๐ฏ Auto-detected: {db.dimension()}D") # 384
# Works with different models seamlessly (768D)
model_768 = SentenceTransformer('all-mpnet-base-v2')
text_768 = model_768.encode(["Machine learning revolution"])[0]
db2 = rudradb.RudraDB() # Fresh auto-detection
db2.add_vector("mpnet_doc", text_768.astype(np.float32), {"model": "mpnet"})
print(f"๐ฏ Auto-detected: {db2.dimension()}D") # 768
# Works with OpenAI (1536D)
openai.api_key = "your-key"
response = openai.Embedding.create(model="text-embedding-ada-002", input="Deep learning")
embedding_1536 = np.array(response['data'][0]['embedding'], dtype=np.float32)
db3 = rudradb.RudraDB() # Fresh auto-detection
db3.add_vector("openai_doc", embedding_1536, {"model": "openai-ada-002"})
print(f"๐ฏ Auto-detected: {db3.dimension()}D") # 1536
# ๐ฅ IMPOSSIBLE WITH TRADITIONAL VECTOR DATABASES!
# No manual configuration, no dimension errors, just works!Intelligent Connection Building - Automatically discovers semantic relationships:
def add_document_with_auto_intelligence(db, doc_id, text, metadata):
"""Add document with full auto-intelligence enabled"""
# 1. Auto-dimension detection handles any model
model = SentenceTransformer('all-MiniLM-L6-v2')
embedding = model.encode([text])[0].astype(np.float32)
# 2. Add vector - dimension auto-detected on first vector
db.add_vector(doc_id, embedding, metadata)
# 3. ๐ง Auto-Relationship Detection analyzes content and metadata
relationships_found = auto_build_smart_relationships(db, doc_id, metadata)
return relationships_found
def auto_build_smart_relationships(db, new_doc_id, metadata):
"""RudraDB-Opin's intelligent auto-relationship detection"""
relationships_created = 0
# ๐ฏ Analyze all existing vectors for intelligent connections
for existing_id in db.list_vectors():
if existing_id == new_doc_id:
continue
existing_vector = db.get_vector(existing_id)
existing_meta = existing_vector['metadata']
# ๐ง SEMANTIC ANALYSIS: Content similarity detection
if metadata.get('category') == existing_meta.get('category'):
db.add_relationship(new_doc_id, existing_id, "semantic", 0.8)
relationships_created += 1
print(f" ๐ Semantic: {new_doc_id} โ {existing_id} (same category)")
# ๐ง HIERARCHICAL ANALYSIS: Parent-child detection
if (metadata.get('type') == 'concept' and existing_meta.get('type') == 'example'):
db.add_relationship(new_doc_id, existing_id, "hierarchical", 0.9)
relationships_created += 1
print(f" ๐ Hierarchical: {new_doc_id} โ {existing_id} (conceptโexample)")
# ๐ง TEMPORAL ANALYSIS: Learning sequence detection
difficulties = {"beginner": 1, "intermediate": 2, "advanced": 3}
current_level = difficulties.get(metadata.get('difficulty', 'intermediate'), 2)
existing_level = difficulties.get(existing_meta.get('difficulty', 'intermediate'), 2)
if abs(current_level - existing_level) == 1 and metadata.get('topic') == existing_meta.get('topic'):
db.add_relationship(new_doc_id, existing_id, "temporal", 0.85)
relationships_created += 1
print(f" โฐ Temporal: {new_doc_id} โ {existing_id} (learning sequence)")
# ๐ง ASSOCIATIVE ANALYSIS: Tag overlap detection
new_tags = set(metadata.get('tags', []))
existing_tags = set(existing_meta.get('tags', []))
shared_tags = new_tags & existing_tags
if len(shared_tags) >= 2: # Strong tag overlap
strength = min(0.7, len(shared_tags) * 0.2)
db.add_relationship(new_doc_id, existing_id, "associative", strength)
relationships_created += 1
print(f" ๐ท๏ธ Associative: {new_doc_id} โ {existing_id} (tags: {', '.join(shared_tags)})")
# ๐ง CAUSAL ANALYSIS: Problem-solution detection
if (metadata.get('type') == 'problem' and existing_meta.get('type') == 'solution'):
db.add_relationship(new_doc_id, existing_id, "causal", 0.95)
relationships_created += 1
print(f" ๐ฏ Causal: {new_doc_id} โ {existing_id} (problemโsolution)")
return relationships_created
# ๐ DEMO: Building a Knowledge Base with Auto-Intelligence
print("๐ค Building AI Knowledge Base with Auto-Intelligence")
db = rudradb.RudraDB() # Auto-dimension detection enabled
# Add documents - watch auto-relationship detection work!
documents = [
{
"id": "ai_basics",
"text": "Artificial Intelligence fundamentals and core concepts",
"metadata": {"category": "AI", "difficulty": "beginner", "type": "concept", "tags": ["ai", "basics"], "topic": "ai"}
},
{
"id": "ml_intro",
"text": "Machine Learning introduction and supervised learning",
"metadata": {"category": "AI", "difficulty": "intermediate", "type": "concept", "tags": ["ml", "supervised"], "topic": "ai"}
},
{
"id": "python_ml_example",
"text": "Python code example for machine learning with scikit-learn",
"metadata": {"category": "AI", "difficulty": "intermediate", "type": "example", "tags": ["python", "ml", "code"], "topic": "ai"}
},
{
"id": "overfitting_problem",
"text": "Overfitting problem in machine learning models",
"metadata": {"category": "AI", "difficulty": "advanced", "type": "problem", "tags": ["ml", "overfitting"], "topic": "ai"}
},
{
"id": "regularization_solution",
"text": "Regularization techniques to prevent overfitting",
"metadata": {"category": "AI", "difficulty": "advanced", "type": "solution", "tags": ["ml", "regularization"], "topic": "ai"}
}
]
total_relationships = 0
for doc in documents:
relationships = add_document_with_auto_intelligence(
db, doc["id"], doc["text"], doc["metadata"]
)
total_relationships += relationships
print(f"\nโ
Auto-created knowledge base:")
print(f" ๐ {db.vector_count()} documents")
print(f" ๐ {db.relationship_count()} auto-detected relationships")
print(f" ๐ฏ {db.dimension()}-dimensional embeddings (auto-detected)")
print(f" ๐ง {total_relationships} intelligent connections found automatically")
# ๐ Experience Auto-Enhanced Search
query = "machine learning techniques and examples"
model = SentenceTransformer('all-MiniLM-L6-v2')
query_embedding = model.encode([query])[0].astype(np.float32)
# Traditional similarity search
basic_results = db.search(query_embedding, rudradb.SearchParams(
top_k=5, include_relationships=False
))
# ๐ง Auto-relationship enhanced search
enhanced_results = db.search(query_embedding, rudradb.SearchParams(
top_k=5,
include_relationships=True, # Uses auto-detected relationships!
max_hops=2,
relationship_weight=0.4
))
print(f"\n๐ Search Results Comparison:")
print(f"Traditional search: {len(basic_results)} results")
print(f"Auto-enhanced search: {len(enhanced_results)} results with relationship intelligence")
for result in enhanced_results:
vector = db.get_vector(result.vector_id)
connection = "Direct match" if result.hop_count == 0 else f"{result.hop_count}-hop auto-connection"
print(f" ๐ {vector['metadata']['type']}: {result.vector_id}")
print(f" โโ {connection} (score: {result.combined_score:.3f})")
print(f"\n๐ RudraDB-Opin discovered {sum(1 for r in enhanced_results if r.hop_count > 0)} additional relevant documents")
print(" that traditional vector databases would completely miss!")When you outgrow the 100-vector limit, upgrade seamlessly:
pip uninstall rudradb-opin
pip install rudradb # Get 1M+ vectors for PRO & Unlimited Vector for Enterprise, same API! import openai
import rudradb
import numpy as np
class OpenAI_RudraDB_RAG:
"""Complete OpenAI + RudraDB-Opin integration with auto-features"""
def __init__(self, api_key):
openai.api_key = api_key
self.db = rudradb.RudraDB() # ๐ฏ Auto-detects OpenAI's 1536 dimensions
print("๐ค OpenAI + RudraDB-Opin initialized with auto-dimension detection")
def add_document(self, doc_id, text, metadata=None):
"""Add document with OpenAI embeddings + auto-relationship detection"""
# Get OpenAI embedding
response = openai.Embedding.create(
model="text-embedding-ada-002",
input=text
)
embedding = np.array(response['data'][0]['embedding'], dtype=np.float32)
# Add with auto-intelligence
enhanced_metadata = {
"text": text,
"embedding_model": "text-embedding-ada-002",
"auto_detected_dim": self.db.dimension() if self.db.dimension() else "pending",
**(metadata or {})
}
self.db.add_vector(doc_id, embedding, enhanced_metadata)
# ๐ง Auto-build relationships based on content analysis
relationships_created = self._auto_detect_relationships(doc_id, enhanced_metadata)
return {
"dimension": self.db.dimension(),
"relationships_created": relationships_created,
"total_vectors": self.db.vector_count()
}
def _auto_detect_relationships(self, new_doc_id, metadata):
"""Auto-detect relationships using OpenAI embeddings + metadata analysis"""
relationships = 0
new_text = metadata.get('text', '')
new_category = metadata.get('category')
new_tags = set(metadata.get('tags', []))
for existing_id in self.db.list_vectors():
if existing_id == new_doc_id or relationships >= 3:
continue
existing = self.db.get_vector(existing_id)
existing_meta = existing['metadata']
existing_text = existing_meta.get('text', '')
existing_category = existing_meta.get('category')
existing_tags = set(existing_meta.get('tags', []))
# ๐ฏ Semantic similarity through category matching
if new_category and new_category == existing_category:
self.db.add_relationship(new_doc_id, existing_id, "semantic", 0.8,
{"reason": "same_category", "auto_detected": True})
relationships += 1
print(f" ๐ Auto-linked {new_doc_id} โ {existing_id} (semantic: same category)")
# ๐ท๏ธ Associative through tag overlap
shared_tags = new_tags & existing_tags
if len(shared_tags) >= 1:
strength = min(0.7, len(shared_tags) * 0.3)
self.db.add_relationship(new_doc_id, existing_id, "associative", strength,
{"reason": "shared_tags", "tags": list(shared_tags), "auto_detected": True})
relationships += 1
print(f" ๐ท๏ธ Auto-linked {new_doc_id} โ {existing_id} (associative: {shared_tags})")
return relationships
def intelligent_qa(self, question):
"""Answer questions using relationship-aware search + GPT"""
# Get question embedding with auto-dimension compatibility
response = openai.Embedding.create(
model="text-embedding-ada-002",
input=question
)
query_embedding = np.array(response['data'][0]['embedding'], dtype=np.float32)
# ๐ง Auto-enhanced relationship-aware search
results = self.db.search(query_embedding, rudradb.SearchParams(
top_k=5,
include_relationships=True, # Use auto-detected relationships
max_hops=2, # Multi-hop discovery
relationship_weight=0.3 # Balance similarity + relationships
))
# Build context from auto-enhanced results
context_pieces = []
for result in results:
vector = self.db.get_vector(result.vector_id)
text = vector['metadata']['text']
connection_type = "Direct match" if result.hop_count == 0 else f"{result.hop_count}-hop connection"
context_pieces.append(f"[{connection_type}] {text}")
context = "\n".join(context_pieces)
# Generate answer with GPT
chat_response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are an AI assistant with access to a relationship-aware knowledge base. Use the provided context to answer questions, noting both direct matches and relationship-connected information."},
{"role": "user", "content": f"Context from relationship-aware search:\n{context}\n\nQuestion: {question}"}
]
)
return {
"answer": chat_response.choices[0].message.content,
"sources_found": len(results),
"relationship_enhanced": sum(1 for r in results if r.hop_count > 0),
"context_dimension": self.db.dimension()
}
# ๐ Demo: OpenAI + Auto-Intelligence
rag = OpenAI_RudraDB_RAG("your-openai-api-key")
# Add AI knowledge with auto-relationship detection
documents = [
{"id": "ai_overview", "text": "Artificial Intelligence is transforming industries through automation and intelligent decision making.",
"category": "AI", "tags": ["ai", "automation", "industry"]},
{"id": "ml_subset", "text": "Machine Learning is a subset of AI that enables computers to learn from data without explicit programming.",
"category": "AI", "tags": ["ml", "data", "learning"]},
{"id": "dl_neural", "text": "Deep Learning uses neural networks with multiple layers to process complex patterns in data.",
"category": "AI", "tags": ["dl", "neural", "patterns"]},
{"id": "nlp_language", "text": "Natural Language Processing helps computers understand and generate human language.",
"category": "AI", "tags": ["nlp", "language", "text"]},
{"id": "cv_vision", "text": "Computer Vision enables machines to interpret and analyze visual information from images and videos.",
"category": "AI", "tags": ["cv", "vision", "images"]}
]
print("๐ค Building AI Knowledge Base with OpenAI + Auto-Intelligence:")
for doc in documents:
result = rag.add_document(doc["id"], doc["text"], {"category": doc["category"], "tags": doc["tags"]})
print(f" ๐ {doc['id']}: {result['relationships_created']} auto-relationships, {result['dimension']}D embedding")
print(f"\nโ
Knowledge base ready: {rag.db.vector_count()} vectors, {rag.db.relationship_count()} auto-relationships")
# Intelligent Q&A with relationship-aware context
answer = rag.intelligent_qa("How does machine learning relate to other AI technologies?")
print(f"\n๐ง Intelligent Answer:")
print(f" Sources: {answer['sources_found']} documents (including {answer['relationship_enhanced']} through relationships)")
print(f" Answer: {answer['answer'][:200]}...")from transformers import AutoTokenizer, AutoModel, pipeline
from sentence_transformers import SentenceTransformer
import torch
import rudradb
import numpy as np
class HuggingFace_RudraDB_MultiModel:
"""HuggingFace + RudraDB-Opin with multi-model auto-dimension detection"""
def __init__(self):
self.models = {}
self.databases = {}
print("๐ค HuggingFace + RudraDB-Opin Multi-Model System initialized")
def add_model(self, model_name, model_type="sentence-transformer"):
"""Add a HuggingFace model with auto-dimension detection"""
if model_type == "sentence-transformer":
model = SentenceTransformer(model_name)
dimension = model.get_sentence_embedding_dimension()
else:
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
# Get dimension from config
dimension = model.config.hidden_size
model = {"tokenizer": tokenizer, "model": model}
self.models[model_name] = {
"model": model,
"type": model_type,
"expected_dimension": dimension
}
# Create database with auto-dimension detection
self.databases[model_name] = rudradb.RudraDB() # ๐ฏ Auto-detects dimension
print(f"โ
Added {model_name} (expected: {dimension}D, auto-detection enabled)")
def encode_text(self, model_name, text):
"""Encode text with specified model"""
model_info = self.models[model_name]
if model_info["type"] == "sentence-transformer":
embedding = model_info["model"].encode([text])[0]
else:
tokenizer = model_info["model"]["tokenizer"]
model = model_info["model"]["model"]
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
embedding = outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
return embedding.astype(np.float32)
def add_document_multimodel(self, doc_id, text, metadata, model_names=None):
"""Add document to multiple model databases with auto-relationship detection"""
if model_names is None:
model_names = list(self.models.keys())
results = {}
for model_name in model_names:
db = self.databases[model_name]
# Encode with current model
embedding = self.encode_text(model_name, text)
# Add to database - auto-dimension detection in action
enhanced_metadata = {
"text": text,
"model": model_name,
"expected_dim": self.models[model_name]["expected_dimension"],
**metadata
}
db.add_vector(doc_id, embedding, enhanced_metadata)
# Auto-detect relationships within this model's space
relationships = self._auto_build_relationships(db, doc_id, enhanced_metadata)
results[model_name] = {
"expected_dim": self.models[model_name]["expected_dimension"],
"detected_dim": db.dimension(),
"relationships_created": relationships,
"match": db.dimension() == self.models[model_name]["expected_dimension"]
}
return results
def _auto_build_relationships(self, db, doc_id, metadata):
"""Auto-build relationships based on metadata analysis"""
relationships_created = 0
doc_tags = set(metadata.get('tags', []))
doc_category = metadata.get('category')
doc_difficulty = metadata.get('difficulty')
for other_id in db.list_vectors():
if other_id == doc_id or relationships_created >= 3:
continue
other_vector = db.get_vector(other_id)
other_meta = other_vector['metadata']
other_tags = set(other_meta.get('tags', []))
other_category = other_meta.get('category')
other_difficulty = other_meta.get('difficulty')
# Auto-detect relationship type and strength
if doc_category == other_category:
# Same category โ semantic relationship
db.add_relationship(doc_id, other_id, "semantic", 0.8,
{"auto_detected": True, "reason": "same_category"})
relationships_created += 1
elif len(doc_tags & other_tags) >= 1:
# Shared tags โ associative relationship
shared = doc_tags & other_tags
strength = min(0.7, len(shared) * 0.25)
db.add_relationship(doc_id, other_id, "associative", strength,
{"auto_detected": True, "reason": "shared_tags", "tags": list(shared)})
relationships_created += 1
elif doc_difficulty and other_difficulty:
# Learning progression โ temporal relationship
levels = {"beginner": 1, "intermediate": 2, "advanced": 3}
if abs(levels.get(doc_difficulty, 2) - levels.get(other_difficulty, 2)) == 1:
db.add_relationship(doc_id, other_id, "temporal", 0.85,
{"auto_detected": True, "reason": "learning_progression"})
relationships_created += 1
return relationships_created
def cross_model_search(self, query, model_names=None, top_k=5):
"""Search across multiple models with auto-enhanced results"""
if model_names is None:
model_names = list(self.models.keys())
all_results = {}
for model_name in model_names:
db = self.databases[model_name]
query_embedding = self.encode_text(model_name, query)
# Auto-enhanced relationship-aware search
results = db.search(query_embedding, rudradb.SearchParams(
top_k=top_k,
include_relationships=True, # Use auto-detected relationships
max_hops=2,
relationship_weight=0.3
))
model_results = []
for result in results:
vector = db.get_vector(result.vector_id)
model_results.append({
"document": result.vector_id,
"text": vector['metadata']['text'],
"similarity": result.similarity_score,
"combined_score": result.combined_score,
"connection": "direct" if result.hop_count == 0 else f"{result.hop_count}-hop",
"model_dimension": db.dimension()
})
all_results[model_name] = {
"results": model_results,
"dimension": db.dimension(),
"total_docs": db.vector_count(),
"total_relationships": db.relationship_count()
}
return all_results
# ๐ Demo: Multi-Model Auto-Dimension Detection
system = HuggingFace_RudraDB_MultiModel()
# Add multiple HuggingFace models - each gets auto-dimension detection
models_to_test = [
("sentence-transformers/all-MiniLM-L6-v2", "sentence-transformer"), # 384D
("sentence-transformers/all-mpnet-base-v2", "sentence-transformer"), # 768D
("distilbert-base-uncased", "transformer") # 768D
]
print("๐ค Adding multiple HuggingFace models with auto-dimension detection:")
for model_name, model_type in models_to_test:
system.add_model(model_name, model_type)
# Add documents to all models - watch auto-dimension detection work
documents = [
{"id": "transformers_paper", "text": "Attention Is All You Need introduced the Transformer architecture revolutionizing NLP",
"category": "NLP", "tags": ["transformers", "attention", "nlp"], "difficulty": "advanced"},
{"id": "bert_paper", "text": "BERT Bidirectional Encoder Representations from Transformers for language understanding",
"category": "NLP", "tags": ["bert", "bidirectional", "nlp"], "difficulty": "intermediate"},
{"id": "gpt_intro", "text": "GPT Generative Pre-trained Transformers for text generation and completion",
"category": "NLP", "tags": ["gpt", "generative", "nlp"], "difficulty": "intermediate"},
{"id": "vision_transformer", "text": "Vision Transformer ViT applies transformer architecture to computer vision tasks",
"category": "CV", "tags": ["vit", "transformers", "vision"], "difficulty": "advanced"}
]
print(f"\n๐ Adding documents with multi-model auto-dimension detection:")
for doc in documents:
results = system.add_document_multimodel(
doc["id"], doc["text"],
{"category": doc["category"], "tags": doc["tags"], "difficulty": doc["difficulty"]}
)
print(f" ๐ {doc['id']}:")
for model_name, result in results.items():
status = "โ
" if result["match"] else "โ ๏ธ"
print(f" {status} {model_name}: Expected {result['expected_dim']}D โ Detected {result['detected_dim']}D")
print(f" Relationships: {result['relationships_created']} auto-created")
# Cross-model search with auto-enhanced results
query = "transformer architecture for language and vision"
print(f"\n๐ Cross-Model Search: '{query}'")
search_results = system.cross_model_search(query, top_k=3)
for model_name, results in search_results.items():
print(f"\n๐ {model_name} ({results['dimension']}D, {results['total_relationships']} auto-relationships):")
for result in results['results'][:2]:
print(f" ๐ {result['document']}")
print(f" Connection: {result['connection']} (score: {result['combined_score']:.3f})")
print(f"\n๐ Multi-model auto-dimension detection successful!")
print(" RudraDB-Opin seamlessly adapted to each model's dimensions automatically!")from haystack import Document, Pipeline
from haystack.document_stores import InMemoryDocumentStore
from haystack.nodes import DensePassageRetriever, FARMReader
import rudradb
import numpy as np
class Haystack_RudraDB_Pipeline:
"""Haystack + RudraDB-Opin integration with auto-intelligence"""
def __init__(self):
# Initialize Haystack components
self.haystack_store = InMemoryDocumentStore()
self.retriever = DensePassageRetriever(
document_store=self.haystack_store,
query_embedding_model="facebook/dpr-question_encoder-single-nq-base",
passage_embedding_model="facebook/dpr-ctx_encoder-single-nq-base"
)
# Initialize RudraDB-Opin with auto-dimension detection
self.rudra_db = rudradb.RudraDB() # ๐ฏ Auto-detects DPR dimensions (768D)
print("๐ Haystack + RudraDB-Opin pipeline initialized")
print(" ๐ค Auto-dimension detection enabled for DPR embeddings")
def process_documents(self, documents):
"""Process documents through Haystack and add to RudraDB with auto-relationships"""
# Convert to Haystack documents
haystack_docs = []
for i, doc in enumerate(documents):
haystack_doc = Document(
content=doc["text"],
meta={
"id": doc["id"],
"title": doc.get("title", f"Document {i+1}"),
**doc.get("metadata", {})
}
)
haystack_docs.append(haystack_doc)
# Add to Haystack document store and create embeddings
self.haystack_store.write_documents(haystack_docs)
self.haystack_store.update_embeddings(self.retriever)
print(f"๐ Processed {len(haystack_docs)} documents through Haystack")
# Add to RudraDB-Opin with auto-dimension detection and relationship building
relationships_created = 0
for doc in haystack_docs:
# Get embedding from Haystack
embedding = self.haystack_store.get_embedding_by_id(doc.id)
if embedding is not None:
embedding_array = np.array(embedding, dtype=np.float32)
# Add to RudraDB with enhanced metadata
enhanced_meta = {
"haystack_id": doc.id,
"title": doc.meta["title"],
"content": doc.content,
"embedding_model": "facebook/dpr-ctx_encoder-single-nq-base",
**doc.meta
}
self.rudra_db.add_vector(doc.meta["id"], embedding_array, enhanced_meta)
# ๐ง Auto-detect relationships based on Haystack processing + content analysis
doc_relationships = self._auto_detect_haystack_relationships(doc.meta["id"], enhanced_meta)
relationships_created += doc_relationships
return {
"processed_docs": len(haystack_docs),
"rudra_dimension": self.rudra_db.dimension(),
"auto_relationships": relationships_created,
"total_vectors": self.rudra_db.vector_count()
}
def _auto_detect_haystack_relationships(self, doc_id, metadata):
"""Auto-detect relationships using Haystack embeddings + metadata"""
relationships = 0
doc_content = metadata.get('content', '')
doc_title = metadata.get('title', '')
doc_category = metadata.get('category')
doc_topics = set(metadata.get('topics', []))
# Analyze against existing documents
for existing_id in self.rudra_db.list_vectors():
if existing_id == doc_id or relationships >= 4:
continue
existing = self.rudra_db.get_vector(existing_id)
existing_meta = existing['metadata']
existing_content = existing_meta.get('content', '')
existing_category = existing_meta.get('category')
existing_topics = set(existing_meta.get('topics', []))
# ๐ฏ Content-based semantic relationships (using Haystack embeddings)
if doc_category and doc_category == existing_category:
self.rudra_db.add_relationship(doc_id, existing_id, "semantic", 0.85,
{"auto_detected": True, "reason": "haystack_same_category", "method": "dpr_embeddings"})
relationships += 1
print(f" ๐ Haystack semantic: {doc_id} โ {existing_id}")
# ๐ท๏ธ Topic overlap relationships
shared_topics = doc_topics & existing_topics
if len(shared_topics) >= 1:
strength = min(0.8, len(shared_topics) * 0.3)
self.rudra_db.add_relationship(doc_id, existing_id, "associative", strength,
{"auto_detected": True, "reason": "shared_topics", "topics": list(shared_topics), "method": "haystack_analysis"})
relationships += 1
print(f" ๐ท๏ธ Haystack associative: {doc_id} โ {existing_id} (topics: {shared_topics})")
# ๐ Hierarchical relationships through title analysis
if "introduction" in doc_title.lower() and existing_category == doc_category:
self.rudra_db.add_relationship(doc_id, existing_id, "hierarchical", 0.7,
{"auto_detected": True, "reason": "introduction_hierarchy", "method": "haystack_title_analysis"})
relationships += 1
print(f" ๐ Haystack hierarchical: {doc_id} โ {existing_id}")
return relationships
def hybrid_search(self, question, top_k=5):
"""Hybrid search using Haystack retrieval + RudraDB relationship-aware search"""
# 1. Haystack dense retrieval
haystack_results = self.retriever.retrieve(question, top_k=top_k*2)
# 2. RudraDB-Opin relationship-aware search
question_embedding = self.retriever.embed_queries([question])[0]
question_embedding = np.array(question_embedding, dtype=np.float32)
rudra_results = self.rudra_db.search(question_embedding, rudradb.SearchParams(
top_k=top_k,
include_relationships=True, # ๐ง Use auto-detected relationships
max_hops=2,
relationship_weight=0.4
))
# 3. Combine and deduplicate results
combined_results = []
seen_docs = set()
# Add Haystack results
for doc in haystack_results[:top_k]:
if doc.meta["id"] not in seen_docs:
combined_results.append({
"id": doc.meta["id"],
"title": doc.meta.get("title", ""),
"content": doc.content[:200] + "...",
"source": "haystack_dense",
"score": doc.score,
"method": "DPR retrieval"
})
seen_docs.add(doc.meta["id"])
# Add RudraDB relationship-enhanced results
for result in rudra_results:
if result.vector_id not in seen_docs:
vector = self.rudra_db.get_vector(result.vector_id)
connection = "direct" if result.hop_count == 0 else f"{result.hop_count}-hop auto-connection"
combined_results.append({
"id": result.vector_id,
"title": vector['metadata'].get('title', ''),
"content": vector['metadata'].get('content', '')[:200] + "...",
"source": "rudradb_relationships",
"score": result.combined_score,
"method": f"Relationship-aware ({connection})",
"hop_count": result.hop_count
})
seen_docs.add(result.vector_id)
# Sort by score
combined_results.sort(key=lambda x: x["score"], reverse=True)
return {
"question": question,
"total_results": len(combined_results),
"haystack_results": len([r for r in combined_results if r["source"] == "haystack_dense"]),
"rudra_relationship_results": len([r for r in combined_results if r["source"] == "rudradb_relationships"]),
"relationship_enhanced": len([r for r in combined_results if r.get("hop_count", 0) > 0]),
"results": combined_results[:top_k],
"dimension": self.rudra_db.dimension()
}
# ๐ Demo: Haystack + RudraDB Auto-Intelligence
pipeline = Haystack_RudraDB_Pipeline()
# Process documents with auto-dimension detection and relationship building
documents = [
{
"id": "ai_intro_doc",
"text": "Artificial Intelligence Introduction: AI systems can perform tasks that typically require human intelligence, including learning, reasoning, and problem-solving.",
"title": "AI Introduction",
"metadata": {"category": "AI", "topics": ["ai", "introduction", "basics"], "difficulty": "beginner"}
},
{
"id": "machine_learning_fundamentals",
"text": "Machine Learning Fundamentals: ML algorithms enable computers to learn from data without being explicitly programmed for every task.",
"title": "ML Fundamentals",
"metadata": {"category": "AI", "topics": ["ml", "algorithms", "data"], "difficulty": "intermediate"}
},
{
"id": "neural_networks_deep",
"text": "Neural Networks and Deep Learning: Deep neural networks with multiple layers can learn complex patterns and representations from large datasets.",
"title": "Neural Networks",
"metadata": {"category": "AI", "topics": ["neural", "deep", "learning"], "difficulty": "advanced"}
},
{
"id": "nlp_processing",
"text": "Natural Language Processing: NLP enables computers to understand, interpret, and generate human language in a valuable way.",
"title": "NLP Overview",
"metadata": {"category": "NLP", "topics": ["nlp", "language", "text"], "difficulty": "intermediate"}
},
{
"id": "computer_vision_intro",
"text": "Computer Vision Introduction: CV systems can automatically identify, analyze, and understand visual content from images and videos.",
"title": "Computer Vision",
"metadata": {"category": "CV", "topics": ["vision", "images", "analysis"], "difficulty": "intermediate"}
}
]
print("๐ Processing documents through Haystack + RudraDB pipeline:")
processing_result = pipeline.process_documents(documents)
print(f"โ
Processing complete:")
print(f" ๐ Documents processed: {processing_result['processed_docs']}")
print(f" ๐ฏ Auto-detected dimension: {processing_result['rudra_dimension']}D (DPR embeddings)")
print(f" ๐ง Auto-relationships created: {processing_result['auto_relationships']}")
print(f" ๐ Total vectors in RudraDB: {processing_result['total_vectors']}")
# Hybrid search with relationship enhancement
questions = [
"What are the fundamentals of machine learning?",
"How do neural networks work in AI systems?"
]
print(f"\n๐ Hybrid Search Demonstrations:")
for question in questions:
results = pipeline.hybrid_search(question, top_k=4)
print(f"\nโ Question: {question}")
print(f" ๐ Results: {results['total_results']} total ({results['haystack_results']} Haystack + {results['rudra_relationship_results']} RudraDB)")
print(f" ๐ง Relationship-enhanced: {results['relationship_enhanced']} documents found through auto-detected connections")
print(f" ๐ฏ Search dimension: {results['dimension']}D")
print(" Top Results:")
for i, result in enumerate(results['results'][:3], 1):
print(f" {i}. {result['title']}")
print(f" Method: {result['method']} (score: {result['score']:.3f})")
print(f" Preview: {result['content']}")
print(f"\n๐ Haystack + RudraDB-Opin integration successful!")
print(" Auto-dimension detection handled DPR embeddings seamlessly!")
print(" Auto-relationship detection enhanced search with intelligent connections!")from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.schema import Document
import rudradb
import numpy as np
class LangChain_RudraDB_AutoRAG:
"""LangChain + RudraDB-Opin integration with auto-intelligence for advanced RAG"""
def __init__(self, embedding_model_name="sentence-transformers/all-MiniLM-L6-v2"):
# Initialize LangChain components
self.embeddings = HuggingFaceEmbeddings(model_name=embedding_model_name)
self.text_splitter = CharacterTextSplitter(
chunk_size=500,
chunk_overlap=50,
separator="\n"
)
# Initialize RudraDB-Opin with auto-dimension detection
self.db = rudradb.RudraDB() # ๐ฏ Auto-detects LangChain embedding dimensions
self.embedding_model_name = embedding_model_name
print(f"๐ฆ LangChain + RudraDB-Opin Auto-RAG initialized")
print(f" ๐ฏ Embedding model: {embedding_model_name}")
print(f" ๐ค Auto-dimension detection enabled")
def add_documents_with_chunking(self, documents):
"""Add documents with LangChain chunking + RudraDB auto-relationship detection"""
all_chunks = []
chunk_metadata = []
# Process each document through LangChain
for doc in documents:
# Create LangChain document
langchain_doc = Document(
page_content=doc["content"],
metadata={
"source_id": doc["id"],
"title": doc.get("title", ""),
**doc.get("metadata", {})
}
)
# Split into chunks
chunks = self.text_splitter.split_documents([langchain_doc])
# Process each chunk
for i, chunk in enumerate(chunks):
chunk_id = f"{doc['id']}_chunk_{i}"
# Create embeddings through LangChain
embedding = self.embeddings.embed_query(chunk.page_content)
embedding_array = np.array(embedding, dtype=np.float32)
# Enhanced metadata for auto-relationship detection
enhanced_metadata = {
"chunk_id": chunk_id,
"source_document": doc["id"],
"chunk_index": i,
"chunk_content": chunk.page_content,
"embedding_model": self.embedding_model_name,
"langchain_processed": True,
**chunk.metadata
}
# Add to RudraDB with auto-dimension detection
self.db.add_vector(chunk_id, embedding_array, enhanced_metadata)
all_chunks.append(chunk_id)
chunk_metadata.append(enhanced_metadata)
# ๐ง Auto-detect relationships between chunks after all are added
relationships_created = self._auto_detect_document_relationships(chunk_metadata)
return {
"total_chunks": len(all_chunks),
"auto_detected_dimension": self.db.dimension(),
"auto_relationships": relationships_created,
"documents_processed": len(documents)
}
def _auto_detect_document_relationships(self, chunk_metadata):
"""Auto-detect sophisticated relationships between document chunks"""
relationships = 0
print("๐ง Auto-detecting sophisticated chunk relationships...")
for i, chunk_meta in enumerate(chunk_metadata):
chunk_id = chunk_meta["chunk_id"]
source_doc = chunk_meta["source_document"]
chunk_index = chunk_meta["chunk_index"]
content = chunk_meta["chunk_content"]
category = chunk_meta.get("category")
topics = set(chunk_meta.get("topics", []))
for j, other_meta in enumerate(chunk_metadata[i+1:], i+1):
if relationships >= 20: # Limit for Opin
break
other_chunk_id = other_meta["chunk_id"]
other_source_doc = other_meta["source_document"]
other_chunk_index = other_meta["chunk_index"]
other_content = other_meta["chunk_content"]
other_category = other_meta.get("category")
other_topics = set(other_meta.get("topics", []))
# ๐ Hierarchical: Sequential chunks from same document
if (source_doc == other_source_doc and
abs(chunk_index - other_chunk_index) == 1):
self.db.add_relationship(chunk_id, other_chunk_id, "hierarchical", 0.9,
{"auto_detected": True, "reason": "sequential_chunks", "method": "langchain_chunking"})
relationships += 1
print(f" ๐ Sequential chunks: {chunk_id} โ {other_chunk_id}")
# ๐ Semantic: Same category, different documents
elif (category and category == other_category and
source_doc != other_source_doc):
self.db.add_relationship(chunk_id, other_chunk_id, "semantic", 0.8,
{"auto_detected": True, "reason": "cross_document_category", "category": category})
relationships += 1
print(f" ๐ Cross-document semantic: {chunk_id} โ {other_chunk_id}")
# ๐ท๏ธ Associative: Shared topics across documents
elif len(topics & other_topics) >= 2 and source_doc != other_source_doc:
shared = topics & other_topics
strength = min(0.75, len(shared) * 0.25)
self.db.add_relationship(chunk_id, other_chunk_id, "associative", strength,
{"auto_detected": True, "reason": "shared_topics", "topics": list(shared)})
relationships += 1
print(f" ๐ท๏ธ Topic association: {chunk_id} โ {other_chunk_id} ({shared})")
# โฐ Temporal: Learning progression detection
elif (chunk_meta.get("difficulty") and other_meta.get("difficulty") and
category == other_category):
levels = {"beginner": 1, "intermediate": 2, "advanced": 3}
level_diff = levels.get(other_meta["difficulty"], 2) - levels.get(chunk_meta["difficulty"], 2)
if level_diff == 1: # Progressive difficulty
self.db.add_relationship(chunk_id, other_chunk_id, "temporal", 0.85,
{"auto_detected": True, "reason": "learning_progression", "from": chunk_meta["difficulty"], "to": other_meta["difficulty"]})
relationships += 1
print(f" โฐ Learning progression: {chunk_id} โ {other_chunk_id}")
return relationships
def auto_enhanced_rag_search(self, query, top_k=5):
"""Advanced RAG search with auto-relationship enhancement"""
# Get query embedding through LangChain
query_embedding = self.embeddings.embed_query(query)
query_embedding_array = np.array(query_embedding, dtype=np.float32)
# ๐ง Auto-enhanced relationship-aware search
results = self.db.search(query_embedding_array, rudradb.SearchParams(
top_k=top_k * 2, # Get more results for relationship expansion
include_relationships=True, # Use auto-detected relationships
max_hops=2, # Multi-hop relationship traversal
relationship_weight=0.35, # Balance similarity + relationships
relationship_types=["semantic", "hierarchical", "associative", "temporal"]
))
# Process and enhance results
enhanced_results = []
seen_documents = set()
for result in results:
vector = self.db.get_vector(result.vector_id)
metadata = vector['metadata']
# Avoid duplicate chunks from same document (take best scoring)
source_doc = metadata.get("source_document")
if source_doc in seen_documents:
continue
seen_documents.add(source_doc)
# Determine connection type and relevance
if result.hop_count == 0:
connection_type = "Direct similarity match"
relevance = "high"
elif result.hop_count == 1:
connection_type = "1-hop relationship connection"
relevance = "medium-high"
else:
connection_type = f"{result.hop_count}-hop relationship chain"
relevance = "medium"
enhanced_results.append({
"chunk_id": result.vector_id,
"source_document": source_doc,
"content": metadata.get("chunk_content", ""),
"title": metadata.get("title", ""),
"similarity_score": result.similarity_score,
"combined_score": result.combined_score,
"connection_type": connection_type,
"relevance": relevance,
"hop_count": result.hop_count,
"category": metadata.get("category", ""),
"chunk_index": metadata.get("chunk_index", 0)
})
if len(enhanced_results) >= top_k:
break
return {
"query": query,
"total_results": len(enhanced_results),
"relationship_enhanced": sum(1 for r in enhanced_results if r["hop_count"] > 0),
"dimension": self.db.dimension(),
"results": enhanced_results,
"database_stats": {
"total_chunks": self.db.vector_count(),
"total_relationships": self.db.relationship_count()
}
}
# ๐ Demo: LangChain + RudraDB Auto-RAG
rag_system = LangChain_RudraDB_AutoRAG("sentence-transformers/all-MiniLM-L6-v2")
# Add documents with automatic chunking and relationship detection
documents = [
{
"id": "ai_foundations",
"title": "AI Foundations",
"content": """Artificial Intelligence Foundations
Introduction to AI:
Artificial Intelligence represents the simulation of human intelligence in machines. These systems are designed to think and learn like humans, performing tasks that traditionally require human cognition such as visual perception, speech recognition, decision-making, and language translation.
Core AI Concepts:
The foundation of AI lies in machine learning algorithms that can process vast amounts of data to identify patterns and make predictions. These systems improve their performance over time through experience, much like human learning processes.
AI Applications:
Modern AI applications span across industries including healthcare for medical diagnosis, finance for fraud detection, transportation for autonomous vehicles, and entertainment for recommendation systems.""",
"metadata": {"category": "AI", "topics": ["ai", "foundations", "introduction"], "difficulty": "beginner"}
},
{
"id": "machine_learning_deep_dive",
"title": "Machine Learning Deep Dive",
"content": """Machine Learning Deep Dive
ML Fundamentals:
Machine Learning is a subset of artificial intelligence that focuses on the development of algorithms that can learn from and make decisions based on data. Unlike traditional programming where humans write explicit instructions, ML systems learn patterns from data to make predictions or decisions.
Types of Machine Learning:
Supervised learning uses labeled data to train models for prediction tasks. Unsupervised learning finds hidden patterns in data without labels. Reinforcement learning learns through interaction with an environment, receiving rewards or penalties for actions.
ML in Practice:
Practical machine learning involves data preprocessing, feature engineering, model selection, training, validation, and deployment. The process requires careful attention to data quality, model evaluation metrics, and avoiding overfitting to ensure good generalization to new data.""",
"metadata": {"category": "AI", "topics": ["ml", "algorithms", "data"], "difficulty": "intermediate"}
},
{
"id": "neural_networks_advanced",
"title": "Advanced Neural Networks",
"content": """Advanced Neural Networks
Deep Learning Architecture:
Neural networks with multiple hidden layers, known as deep neural networks, can learn complex hierarchical representations of data. Each layer learns increasingly abstract features, from simple edges and textures in lower layers to complex objects and concepts in higher layers.
Training Deep Networks:
Training deep neural networks requires specialized techniques including backpropagation for gradient computation, various optimization algorithms like Adam and SGD, regularization methods like dropout and batch normalization, and careful initialization strategies.
Modern Applications:
Advanced neural network architectures like convolutional neural networks excel at computer vision tasks, recurrent neural networks handle sequential data, and transformer models have revolutionized natural language processing with attention mechanisms enabling parallel processing of sequences.""",
"metadata": {"category": "AI", "topics": ["neural", "deep", "learning"], "difficulty": "advanced"}
}
]
print("๐ฆ Processing documents with LangChain + RudraDB Auto-Intelligence:")
processing_result = rag_system.add_documents_with_chunking(documents)
print(f"โ
Document processing complete:")
print(f" ๐ Documents processed: {processing_result['documents_processed']}")
print(f" ๐ Total chunks created: {processing_result['total_chunks']}")
print(f" ๐ฏ Auto-detected dimension: {processing_result['auto_detected_dimension']}D")
print(f" ๐ง Auto-relationships created: {processing_result['auto_relationships']}")
# Advanced RAG search with relationship enhancement
queries = [
"What are the fundamentals of artificial intelligence?",
"How do neural networks learn from data?",
"What's the difference between supervised and unsupervised learning?"
]
print(f"\n๐ Advanced Auto-Enhanced RAG Search:")
for query in queries:
search_result = rag_system.auto_enhanced_rag_search(query, top_k=4)
print(f"\nโ Query: {query}")
print(f" ๐ Results: {search_result['total_results']} documents found")
print(f" ๐ง Relationship-enhanced: {search_result['relationship_enhanced']} through auto-detected connections")
print(f" ๐ฏ Search dimension: {search_result['dimension']}D")
print(f" ๐ Database stats: {search_result['database_stats']['total_chunks']} chunks, {search_result['database_stats']['total_relationships']} relationships")
print(" ๐ Top Results:")
for i, result in enumerate(search_result['results'][:3], 1):
print(f" {i}. {result['title']} (Chunk {result['chunk_index']})")
print(f" Connection: {result['connection_type']} | Relevance: {result['relevance']}")
print(f" Score: {result['combined_score']:.3f} | Category: {result['category']}")
print(f" Content: {result['content'][:150]}...")
print(f"\n๐ LangChain + RudraDB-Opin Auto-RAG successful!")
print(" โจ Auto-dimension detection seamlessly handled LangChain embeddings")
print(" โจ Auto-relationship detection created sophisticated document connections")
print(" โจ Multi-hop relationship traversal enhanced search relevance")import rudradb
import numpy as np
from typing import List, Dict, Any
import json
class Pinecone_to_RudraDB_Migration:
"""Seamless migration from Pinecone to RudraDB-Opin with enhanced auto-features"""
def __init__(self, pinecone_dimension=None):
"""Initialize migration tool with optional dimension hint"""
# RudraDB-Opin with auto-dimension detection
self.rudra_db = rudradb.RudraDB() # ๐ฏ Auto-detects dimensions from migrated data
# Migration tracking
self.migration_stats = {
"vectors_migrated": 0,
"relationships_auto_created": 0,
"dimension_detected": None,
"pinecone_dimension_hint": pinecone_dimension
}
print("๐ Pinecone โ RudraDB-Opin Migration Tool initialized")
print(" ๐ฏ Auto-dimension detection enabled (no manual dimension setting required)")
print(" ๐ง Auto-relationship detection will create intelligent connections")
def migrate_pinecone_data(self, pinecone_vectors: List[Dict[str, Any]]):
"""Migrate vectors from Pinecone format to RudraDB-Opin with auto-enhancements"""
print(f"๐ Starting migration of {len(pinecone_vectors)} vectors from Pinecone...")
relationships_created = 0
for i, pinecone_vector in enumerate(pinecone_vectors):
# Extract Pinecone data
vector_id = pinecone_vector.get("id", f"migrated_vector_{i}")
values = pinecone_vector.get("values", [])
metadata = pinecone_vector.get("metadata", {})
# Convert to numpy array
embedding = np.array(values, dtype=np.float32)
# Enhance metadata for auto-relationship detection
enhanced_metadata = {
"migrated_from": "pinecone",
"original_id": vector_id,
"migration_order": i,
**metadata # Preserve original Pinecone metadata
}
# Add to RudraDB-Opin with auto-dimension detection
try:
self.rudra_db.add_vector(vector_id, embedding, enhanced_metadata)
self.migration_stats["vectors_migrated"] += 1
# Update dimension info after first vector
if self.migration_stats["dimension_detected"] is None:
self.migration_stats["dimension_detected"] = self.rudra_db.dimension()
print(f" ๐ฏ Auto-detected dimension: {self.migration_stats['dimension_detected']}D")
# Validate against Pinecone hint
if (self.migration_stats["pinecone_dimension_hint"] and
self.migration_stats["dimension_detected"] != self.migration_stats["pinecone_dimension_hint"]):
print(f" โ ๏ธ Dimension mismatch detected!")
print(f" Pinecone hint: {self.migration_stats['pinecone_dimension_hint']}D")
print(f" Auto-detected: {self.migration_stats['dimension_detected']}D")
# ๐ง Auto-create relationships based on migrated metadata
if self.migration_stats["vectors_migrated"] > 1: # Need at least 2 vectors
vector_relationships = self._auto_create_migration_relationships(vector_id, enhanced_metadata)
relationships_created += vector_relationships
if (i + 1) % 25 == 0: # Progress update every 25 vectors
print(f" ๐ Migrated {i + 1}/{len(pinecone_vectors)} vectors...")
except Exception as e:
print(f" โ Failed to migrate vector {vector_id}: {e}")
continue
self.migration_stats["relationships_auto_created"] = relationships_created
return self.migration_stats
def _auto_create_migration_relationships(self, new_vector_id: str, metadata: Dict[str, Any]):
"""Auto-create intelligent relationships based on migrated Pinecone metadata"""
relationships_created = 0
# Extract relationship indicators from metadata
new_category = metadata.get("category") or metadata.get("type")
new_tags = set(metadata.get("tags", []) if isinstance(metadata.get("tags"), list) else [])
new_user = metadata.get("user_id") or metadata.get("user")
new_timestamp = metadata.get("timestamp") or metadata.get("created_at")
new_source = metadata.get("source") or metadata.get("source_type")
# Analyze existing vectors for relationship opportunities
for existing_id in self.rudra_db.list_vectors():
if existing_id == new_vector_id or relationships_created >= 3:
continue
existing_vector = self.rudra_db.get_vector(existing_id)
existing_meta = existing_vector['metadata']
existing_category = existing_meta.get("category") or existing_meta.get("type")
existing_tags = set(existing_meta.get("tags", []) if isinstance(existing_meta.get("tags"), list) else [])
existing_user = existing_meta.get("user_id") or existing_meta.get("user")
existing_source = existing_meta.get("source") or existing_meta.get("source_type")
# ๐ Semantic relationship: Same category/type
if new_category and new_category == existing_category:
self.rudra_db.add_relationship(new_vector_id, existing_id, "semantic", 0.8,
{"auto_detected": True, "reason": "pinecone_same_category", "category": new_category})
relationships_created += 1
print(f" ๐ Auto-linked: {new_vector_id} โ {existing_id} (same category: {new_category})")
# ๐ท๏ธ Associative relationship: Shared tags
elif len(new_tags & existing_tags) >= 1:
shared_tags = new_tags & existing_tags
strength = min(0.7, len(shared_tags) * 0.3)
self.rudra_db.add_relationship(new_vector_id, existing_id, "associative", strength,
{"auto_detected": True, "reason": "pinecone_shared_tags", "tags": list(shared_tags)})
relationships_created += 1
print(f" ๐ท๏ธ Auto-linked: {new_vector_id} โ {existing_id} (shared tags: {shared_tags})")
# ๐ Hierarchical relationship: Same user/owner
elif new_user and new_user == existing_user:
self.rudra_db.add_relationship(new_vector_id, existing_id, "hierarchical", 0.7,
{"auto_detected": True, "reason": "pinecone_same_user", "user": new_user})
relationships_created += 1
print(f" ๐ Auto-linked: {new_vector_id} โ {existing_id} (same user: {new_user})")
# ๐ฏ Associative relationship: Same source
elif new_source and new_source == existing_source:
self.rudra_db.add_relationship(new_vector_id, existing_id, "associative", 0.6,
{"auto_detected": True, "reason": "pinecone_same_source", "source": new_source})
relationships_created += 1
print(f" ๐ฏ Auto-linked: {new_vector_id} โ {existing_id} (same source: {new_source})")
return relationships_created
def compare_capabilities(self):
"""Compare Pinecone vs RudraDB-Opin capabilities after migration"""
stats = self.rudra_db.get_statistics()
comparison = {
"feature_comparison": {
"Vector Storage": {"Pinecone": "โ
Yes", "RudraDB-Opin": "โ
Yes"},
"Similarity Search": {"Pinecone": "โ
Yes", "RudraDB-Opin": "โ
Yes"},
"Auto-Dimension Detection": {"Pinecone": "โ Manual only", "RudraDB-Opin": "โ
Automatic"},
"Relationship Modeling": {"Pinecone": "โ None", "RudraDB-Opin": "โ
5 types"},
"Auto-Relationship Detection": {"Pinecone": "โ None", "RudraDB-Opin": "โ
Intelligent"},
"Multi-hop Discovery": {"Pinecone": "โ None", "RudraDB-Opin": "โ
2 hops"},
"Metadata Filtering": {"Pinecone": "โ
Basic", "RudraDB-Opin": "โ
Advanced"},
"Free Tier": {"Pinecone": "โ Limited trial", "RudraDB-Opin": "โ
100% free version"},
"Setup Complexity": {"Pinecone": "โ API keys, config", "RudraDB-Opin": "โ
pip install"},
"Relationship-Enhanced Search": {"Pinecone": "โ Not available", "RudraDB-Opin": "โ
Automatic"}
},
"migration_results": {
"vectors_migrated": self.migration_stats["vectors_migrated"],
"relationships_auto_created": self.migration_stats["relationships_auto_created"],
"dimension_auto_detected": self.migration_stats["dimension_detected"],
"capacity_remaining": {
"vectors": stats["capacity_usage"]["vector_capacity_remaining"],
"relationships": stats["capacity_usage"]["relationship_capacity_remaining"]
}
}
}
return comparison
def demonstrate_enhanced_search(self, query_vector: np.ndarray, query_description: str):
"""Demonstrate RudraDB-Opin's enhanced search vs Pinecone-style search"""
print(f"๐ Search Comparison: {query_description}")
# Pinecone-style similarity-only search
basic_results = self.rudra_db.search(query_vector, rudradb.SearchParams(
top_k=5,
include_relationships=False # Pinecone equivalent
))
# RudraDB-Opin enhanced search with auto-relationships
enhanced_results = self.rudra_db.search(query_vector, rudradb.SearchParams(
top_k=5,
include_relationships=True, # Use auto-detected relationships
max_hops=2,
relationship_weight=0.3
))
comparison_result = {
"query_description": query_description,
"pinecone_style_results": len(basic_results),
"rudradb_enhanced_results": len(enhanced_results),
"additional_discoveries": len([r for r in enhanced_results if r.hop_count > 0]),
"results_preview": []
}
print(f" ๐ Pinecone-style search: {len(basic_results)} results")
print(f" ๐ง RudraDB-Opin enhanced: {len(enhanced_results)} results")
print(f" โจ Additional discoveries: {len([r for r in enhanced_results if r.hop_count > 0])} through relationships")
# Show preview of enhanced results
for result in enhanced_results[:3]:
vector = self.rudra_db.get_vector(result.vector_id)
connection = "Direct similarity" if result.hop_count == 0 else f"{result.hop_count}-hop relationship"
result_info = {
"vector_id": result.vector_id,
"connection_type": connection,
"combined_score": result.combined_score,
"metadata_preview": {k: v for k, v in vector['metadata'].items() if k in ['category', 'tags', 'source']}
}
comparison_result["results_preview"].append(result_info)
print(f" ๐ {result.vector_id}: {connection} (score: {result.combined_score:.3f})")
return comparison_result
# ๐ Demo: Pinecone to RudraDB-Opin Migration
migration_tool = Pinecone_to_RudraDB_Migration(pinecone_dimension=384)
# Simulate Pinecone data format
pinecone_vectors = [
{
"id": "doc_ai_intro",
"values": np.random.rand(384).tolist(), # Simulated 384D embedding
"metadata": {
"category": "AI",
"tags": ["artificial intelligence", "introduction", "basics"],
"user_id": "researcher_1",
"source": "research_papers",
"title": "Introduction to Artificial Intelligence"
}
},
{
"id": "doc_ml_fundamentals",
"values": np.random.rand(384).tolist(),
"metadata": {
"category": "AI",
"tags": ["machine learning", "algorithms", "data science"],
"user_id": "researcher_1",
"source": "research_papers",
"title": "Machine Learning Fundamentals"
}
},
{
"id": "doc_neural_networks",
"values": np.random.rand(384).tolist(),
"metadata": {
"category": "AI",
"tags": ["neural networks", "deep learning", "backpropagation"],
"user_id": "researcher_2",
"source": "textbooks",
"title": "Neural Networks and Deep Learning"
}
},
{
"id": "doc_nlp_overview",
"values": np.random.rand(384).tolist(),
"metadata": {
"category": "NLP",
"tags": ["natural language processing", "text analysis", "linguistics"],
"user_id": "researcher_2",
"source": "research_papers",
"title": "Natural Language Processing Overview"
}
},
{
"id": "doc_computer_vision",
"values": np.random.rand(384).tolist(),
"metadata": {
"category": "CV",
"tags": ["computer vision", "image processing", "pattern recognition"],
"user_id": "researcher_1",
"source": "textbooks",
"title": "Computer Vision Techniques"
}
}
]
# Perform migration
print("๐ Starting Pinecone to RudraDB-Opin migration...")
migration_results = migration_tool.migrate_pinecone_data(pinecone_vectors)
print(f"\nโ
Migration Complete!")
print(f" ๐ Vectors migrated: {migration_results['vectors_migrated']}")
print(f" ๐ฏ Auto-detected dimension: {migration_results['dimension_detected']}D")
print(f" ๐ง Auto-relationships created: {migration_results['relationships_auto_created']}")
# Compare capabilities
print(f"\n๐ Capability Comparison:")
comparison = migration_tool.compare_capabilities()
print(" ๐ Feature Comparison:")
for feature, implementations in comparison["feature_comparison"].items():
print(f" {feature}:")
print(f" Pinecone: {implementations['Pinecone']}")
print(f" RudraDB-Opin: {implementations['RudraDB-Opin']}")
# Demonstrate enhanced search
query_vector = np.random.rand(384).astype(np.float32)
search_demo = migration_tool.demonstrate_enhanced_search(
query_vector, "AI and machine learning concepts"
)
print(f"\n๐ Migration to RudraDB-Opin successful!")
print(" โจ Gained relationship-aware search capabilities")
print(" โจ Auto-dimension detection eliminated configuration")
print(" โจ Auto-relationship detection created intelligent connections")
print(f" โจ Enhanced search discovered {search_demo['additional_discoveries']} additional relevant results")(Pinecone, ChromaDB, Weaviate, Qdrant)
| Capability | Traditional VectorDBs | RudraDB-Opin | Winner |
|---|---|---|---|
| Basic Vector Search | โ Yes | โ Yes | ๐ค Tie |
| ๐ฏ Auto-Dimension Detection | โ Manual config required | โ Automatic with any model | ๐ RudraDB-Opin |
| ๐ง Auto-Relationship Detection | โ None | โ Intelligent analysis | ๐ RudraDB-Opin |
| Relationship Intelligence | โ None | โ 5 semantic types | ๐ RudraDB-Opin |
| Multi-hop Discovery | โ None | โ 2-degree traversal | ๐ RudraDB-Opin |
| ๐ Auto-Performance Optimization | โ Manual tuning | โ Self-optimizing | ๐ RudraDB-Opin |
| Zero-Config Setup | โ Complex configuration | โ
pip install and go |
๐ RudraDB-Opin |
| Learning-Focused | โ Enterprise complexity | โ Perfect for education | ๐ RudraDB-Opin |
| Free Tier | โ Limited trials | โ 100% free version | ๐ RudraDB-Opin |
| Connection Discovery | โ Manual queries only | โ Auto-enhanced search | ๐ RudraDB-Opin |
๐ Result: RudraDB-Opin wins 8/10 capabilities with revolutionary auto-features!
# Traditional Vector DBs - Complex manual setup
import pinecone
pinecone.init(api_key="...", environment="...") # API keys required
index = pinecone.Index("my-index") # Manual index management
index.upsert([("id", [0.1]*1536)]) # Manual dimension specification (1536)
results = index.query([0.1]*1536) # Only similarity search
# โ No relationships, no auto-features, no intelligent connections
# RudraDB-Opin - Zero configuration with auto-intelligence
import rudradb
db = rudradb.RudraDB() # ๐ฅ Zero config, auto-dimension detection
db.add_vector("id", embedding, metadata) # ๐ฏ Auto-detects any dimension
db.auto_build_relationships("id") # ๐ง Auto-creates intelligent relationships
results = db.search(query, include_relationships=True) # โจ Auto-enhanced search
# โ
Full auto-intelligence, relationship awareness, connection discovery(Weaviate with GraphQL, Qdrant with payloads, Milvus with attributes)
| Capability | Hybrid VectorDBs | RudraDB-Opin | Winner |
|---|---|---|---|
| Vector Search | โ Yes | โ Yes | ๐ค Tie |
| Metadata Filtering | โ Basic filtering | โ Rich metadata + analysis | ๐ RudraDB-Opin |
| ๐ฏ Auto-Dimension Detection | โ Manual config | โ Works with any model | ๐ RudraDB-Opin |
| Relationship Intelligence | โ Keywords/tags only | โ 5 semantic relationship types | ๐ RudraDB-Opin |
| ๐ง Auto-Relationship Building | โ Manual relationship setup | โ Intelligent auto-detection | ๐ RudraDB-Opin |
| Graph-like Traversal | โ Limited navigation | โ Multi-hop with auto-optimization | ๐ RudraDB-Opin |
| Context Understanding | โ Statistical filtering only | โ Semantic + contextual relationships | ๐ RudraDB-Opin |
| ๐ Auto-Performance Optimization | โ Manual tuning required | โ Self-tuning system | ๐ RudraDB-Opin |
| Setup Complexity | โ Enterprise-level complexity | โ Zero configuration | ๐ RudraDB-Opin |
| Educational Access | โ Enterprise pricing | โ 100% free learning tier | ๐ RudraDB-Opin |
๐ Result: RudraDB-Opin wins 9/10 capabilities with superior auto-intelligence!
# Hybrid Vector DBs - Complex schema and manual relationships
import weaviate
client = weaviate.Client("http://localhost:8080")
client.schema.create_class({ # Manual schema definition
"class": "Document",
"properties": [ # Manual property setup
{"name": "content", "dataType": ["text"]},
{"name": "category", "dataType": ["string"]}
]
})
client.data_object.create( # Manual object creation
{"content": "text", "category": "AI"},
class_name="Document",
vector=[0.1]*768 # Manual dimension (768)
)
# โ No auto-features, complex setup, limited relationship intelligence
# RudraDB-Opin - Full auto-intelligence with semantic relationships
import rudradb
db = rudradb.RudraDB() # ๐ฅ Zero schema, auto-dimension detection
db.add_vector("doc", embedding, { # ๐ฏ Any embedding model works
"content": "text", "category": "AI", # ๐ง Auto-analyzes for relationships
"tags": ["ai", "ml"], "difficulty": "intro"
})
auto_relationships = db.auto_build_relationships("doc") # โจ Intelligent auto-detection
results = db.search(query, include_relationships=True) # ๐ Auto-enhanced discovery
# โ
Full semantic intelligence, zero configuration, automatic optimization(Neo4j, ArangoDB, Amazon Neptune)
| Capability | Graph Databases | RudraDB-Opin | Winner |
|---|---|---|---|
| Graph Relationships | โ Complex graphs | โ AI-optimized relationships | ๐ค Tie |
| Vector Search | โ Limited/plugin only | โ Native vector + relationships | ๐ RudraDB-Opin |
| ๐ฏ Auto-Dimension Detection | โ Not applicable | โ Seamless ML model support | ๐ RudraDB-Opin |
| ๐ง Auto-Relationship Detection | โ Manual relationship creation | โ AI-powered auto-detection | ๐ RudraDB-Opin |
| Embedding Integration | โ Complex plugins/setup | โ Zero-config ML integration | ๐ RudraDB-Opin |
| Similarity + Relationships | โ Requires separate systems | โ Unified search experience | ๐ RudraDB-Opin |
| ๐ Auto-Performance Optimization | โ DBA expertise required | โ Self-tuning for AI workloads | ๐ RudraDB-Opin |
| Setup Complexity | โ Enterprise complexity | โ
pip install simplicity |
๐ RudraDB-Opin |
| AI/ML Focus | โ General purpose | โ Built for AI/ML workflows | ๐ RudraDB-Opin |
| Educational Access | โ Enterprise licensing | โ 100% free version | ๐ RudraDB-Opin |
๐ Result: RudraDB-Opin wins 8/10 with AI-native design and auto-intelligence!
# Graph Databases - Complex setup for AI workloads
from neo4j import GraphDatabase
driver = GraphDatabase.driver("bolt://localhost:7687", auth=("neo4j", "password"))
with driver.session() as session:
session.run("CREATE (n:Document {content: $content})", content="AI text")
# โ No vector search, no embeddings, complex Cypher queries
# โ Manual relationship creation, no auto-intelligence
# โ Requires separate vector search system for similarity
# RudraDB-Opin - AI-native with unified vector + graph intelligence
import rudradb
db = rudradb.RudraDB() # ๐ฅ AI-native, auto-dimension detection
db.add_vector("doc", ai_embedding, { # ๐ฏ Native vector + metadata
"content": "AI text", "category": "AI"
})
auto_rels = db.auto_build_relationships("doc") # ๐ง AI-powered relationship detection
results = db.search(query_vector, include_relationships=True) # โจ Unified vector + graph search
# โ
Native AI integration, automatic intelligence, unified experience# ๐ฅ IMPOSSIBLE with other databases - works with ANY ML model
db = rudradb.RudraDB() # No dimension specification needed!
# OpenAI Ada-002 (1536D) โ Auto-detected
openai_emb = get_openai_embedding("text")
db.add_vector("openai", openai_emb, {"model": "ada-002"})
print(f"Auto-detected: {db.dimension()}D") # 1536
# Switch to Sentence Transformers (384D) โ New auto-detection
db2 = rudradb.RudraDB() # Fresh auto-detection
st_emb = sentence_transformer.encode("text")
db2.add_vector("st", st_emb, {"model": "sentence-transformers"})
print(f"Auto-detected: {db2.dimension()}D") # 384
# ๐ Traditional databases REQUIRE manual dimension specification and throw errors!# ๐ฅ UNIQUE to RudraDB-Opin - builds relationships automatically
db = rudradb.RudraDB()
# Just add documents with rich metadata
db.add_vector("doc1", emb1, {"category": "AI", "difficulty": "beginner", "tags": ["intro", "basics"]})
db.add_vector("doc2", emb2, {"category": "AI", "difficulty": "intermediate", "tags": ["ml", "advanced"]})
# ๐ง Auto-relationship detection analyzes content and creates intelligent connections
auto_relationships = db.auto_build_relationships("doc1")
# Automatically creates:
# - Semantic relationships (same category)
# - Temporal relationships (difficulty progression)
# - Associative relationships (shared tags)
# ๐ Traditional databases have NO relationship intelligence!# ๐ฅ Revolutionary search that discovers connections others miss
query_emb = model.encode("machine learning basics")
# Traditional DB result: Only similar documents
basic_results = traditional_db.search(query_emb) # 3 results
# RudraDB-Opin auto-enhanced result: Similar + relationship-connected
enhanced_results = db.search(query_emb, rudradb.SearchParams(
include_relationships=True, # ๐ง Uses auto-detected relationships
max_hops=2 # Multi-hop relationship traversal
)) # 7 results - discovered 4 additional relevant documents!
# ๐ Finds documents traditional databases completely miss through relationship intelligence!# ๐ Perfect for tutorials and courses with auto-intelligence
class AI_Learning_System:
def __init__(self):
self.db = rudradb.RudraDB() # Auto-dimension detection for any model
def add_lesson(self, lesson_id, content, difficulty, topic):
embedding = self.model.encode(content) # Any model works
# Rich metadata for auto-relationship detection
metadata = {
"content": content,
"difficulty": difficulty, # Auto-detects learning progression
"topic": topic, # Auto-detects topic clustering
"type": "lesson", # Auto-detects lesson โ example relationships
"tags": self.extract_tags(content) # Auto-detects tag associations
}
self.db.add_vector(lesson_id, embedding, metadata)
# ๐ง Auto-build learning relationships
return self.db.auto_build_learning_relationships(lesson_id, metadata)
def intelligent_learning_path(self, query):
"""Find optimal learning sequence with auto-relationship intelligence"""
query_emb = self.model.encode(query)
# Auto-enhanced search discovers learning progressions
return self.db.search(query_emb, rudradb.SearchParams(
include_relationships=True, # Use auto-detected relationships
relationship_types=["temporal", "hierarchical"], # Focus on learning sequences
max_hops=2 # Multi-step learning paths
))
# ๐ Builds perfect learning sequences automatically!
learning_system = AI_Learning_System()
learning_system.add_lesson("intro_ai", "Introduction to AI...", "beginner", "ai")
learning_system.add_lesson("ml_basics", "ML fundamentals...", "intermediate", "ai")
# Auto-creates beginner โ intermediate temporal relationship!
path = learning_system.intelligent_learning_path("learn machine learning")
# Discovers optimal learning sequence through auto-detected relationships!# ๐ Research paper discovery with auto-relationship intelligence
class Research_Discovery_System:
def __init__(self):
self.db = rudradb.RudraDB() # Auto-dimension for any research embeddings
def add_paper(self, paper_id, abstract, metadata):
embedding = self.get_research_embedding(abstract) # Any model
# Research metadata for auto-relationship detection
enhanced_metadata = {
"abstract": abstract,
"year": metadata["year"], # Auto-detects temporal citations
"field": metadata["field"], # Auto-detects field clustering
"methodology": metadata.get("method"), # Auto-detects method relationships
"problem_type": metadata.get("problem"), # Auto-detects problem-solution
"authors": metadata["authors"], # Auto-detects author networks
**metadata
}
self.db.add_vector(paper_id, embedding, enhanced_metadata)
# ๐ง Auto-detect research relationships
return self.db.auto_build_research_relationships(paper_id, enhanced_metadata)
def discover_research_connections(self, query_paper):
"""Discover research connections through auto-relationship networks"""
paper_vector = self.db.get_vector(query_paper)
paper_embedding = paper_vector["embedding"]
# Auto-enhanced discovery finds citation networks and methodological connections
return self.db.search(paper_embedding, rudradb.SearchParams(
include_relationships=True, # Use auto-detected research relationships
relationship_types=["causal", "semantic", "temporal"], # Research patterns
max_hops=2, # Citation chains
relationship_weight=0.4 # Balance citation + similarity
))
# ๐ Automatically builds research citation networks and discovers methodological connections!
research_system = Research_Discovery_System()
research_system.add_paper("transformer_paper", "Attention is all you need...",
{"year": 2017, "field": "NLP", "method": "attention"})
research_system.add_paper("bert_paper", "BERT bidirectional representations...",
{"year": 2018, "field": "NLP", "method": "pretraining"})
# Auto-creates temporal (2017 โ 2018) and methodological (attention โ pretraining) relationships!
connections = research_system.discover_research_connections("transformer_paper")
# Discovers papers that cited, built upon, or used similar methodologies automatically!# ๐ E-commerce with auto-relationship product discovery
class Ecommerce_Intelligence_System:
def __init__(self):
self.db = rudradb.RudraDB() # Auto-dimension for any product embeddings
def add_product(self, product_id, description, product_metadata):
embedding = self.get_product_embedding(description) # Any embedding model
# Product metadata for auto-relationship detection
enhanced_metadata = {
"description": description,
"category": product_metadata["category"], # Auto-detects category clusters
"price_range": self.get_price_range(product_metadata["price"]), # Auto-detects price relationships
"brand": product_metadata["brand"], # Auto-detects brand associations
"features": product_metadata.get("features", []), # Auto-detects feature overlaps
"use_cases": product_metadata.get("use_cases", []), # Auto-detects usage relationships
"target_audience": product_metadata.get("audience"), # Auto-detects audience segments
**product_metadata
}
self.db.add_vector(product_id, embedding, enhanced_metadata)
# ๐ง Auto-detect product relationships
return self.db.auto_build_product_relationships(product_id, enhanced_metadata)
def intelligent_product_discovery(self, query_or_product_id):
"""Discover products through auto-relationship networks"""
if isinstance(query_or_product_id, str) and query_or_product_id in self.db.list_vectors():
# Product-to-product discovery
product_vector = self.db.get_vector(query_or_product_id)
search_embedding = product_vector["embedding"]
else:
# Query-based discovery
search_embedding = self.get_product_embedding(str(query_or_product_id))
# Auto-enhanced product discovery
return self.db.search(search_embedding, rudradb.SearchParams(
include_relationships=True, # Use auto-detected product relationships
relationship_types=["associative", "semantic", "causal"], # Purchase patterns
max_hops=2, # "Customers who bought X also bought Y"
relationship_weight=0.35 # Balance similarity + purchase relationships
))
# ๐ Automatically builds "customers also bought" and "similar products" networks!
ecommerce_system = Ecommerce_Intelligence_System()
ecommerce_system.add_product("laptop_gaming", "High-performance gaming laptop with RTX GPU",
{"category": "Electronics", "brand": "NVIDIA", "features": ["gaming", "rtx", "high_performance"]})
ecommerce_system.add_product("gaming_mouse", "Precision gaming mouse with RGB lighting",
{"category": "Electronics", "brand": "Razer", "features": ["gaming", "rgb", "precision"]})
# Auto-creates associative relationship (shared "gaming" feature)!
recommendations = ecommerce_system.intelligent_product_discovery("laptop_gaming")
# Discovers complementary products (gaming accessories) and similar items automatically!# ๐ Content management with auto-relationship organization
class Content_Intelligence_System:
def __init__(self):
self.db = rudradb.RudraDB() # Auto-dimension for any content embeddings
def add_content(self, content_id, content_text, content_metadata):
embedding = self.get_content_embedding(content_text) # Any model works
# Content metadata for auto-relationship detection
enhanced_metadata = {
"content": content_text,
"content_type": content_metadata["type"], # Auto-detects type clustering
"publication_date": content_metadata["date"], # Auto-detects temporal sequences
"author": content_metadata["author"], # Auto-detects author networks
"tags": content_metadata.get("tags", []), # Auto-detects tag associations
"audience_level": content_metadata.get("level"), # Auto-detects reading progression
"content_series": content_metadata.get("series"), # Auto-detects series relationships
"references": content_metadata.get("references", []), # Auto-detects reference networks
**content_metadata
}
self.db.add_vector(content_id, embedding, enhanced_metadata)
# ๐ง Auto-detect content relationships
return self.db.auto_build_content_relationships(content_id, enhanced_metadata)
def intelligent_content_discovery(self, query, discovery_type="comprehensive"):
"""Discover content through auto-relationship networks"""
query_embedding = self.get_content_embedding(query)
if discovery_type == "comprehensive":
# Discover all related content through multiple relationship types
search_params = rudradb.SearchParams(
include_relationships=True,
relationship_types=["semantic", "hierarchical", "associative", "temporal"],
max_hops=2,
relationship_weight=0.4
)
elif discovery_type == "series":
# Focus on content series and sequential relationships
search_params = rudradb.SearchParams(
include_relationships=True,
relationship_types=["hierarchical", "temporal"],
max_hops=1,
relationship_weight=0.5
)
elif discovery_type == "author_network":
# Focus on author-based relationships
search_params = rudradb.SearchParams(
include_relationships=True,
relationship_types=["associative", "semantic"],
max_hops=2,
relationship_weight=0.3
)
return self.db.search(query_embedding, search_params)
# ๐ Automatically organizes content networks by author, series, topic, and reading level!
content_system = Content_Intelligence_System()
content_system.add_content("ai_intro_1", "Introduction to AI: Part 1 - Basic Concepts",
{"type": "tutorial", "author": "Dr. Smith", "level": "beginner",
"series": "AI Fundamentals", "tags": ["ai", "intro"]})
content_system.add_content("ai_intro_2", "Introduction to AI: Part 2 - Machine Learning",
{"type": "tutorial", "author": "Dr. Smith", "level": "beginner",
"series": "AI Fundamentals", "tags": ["ai", "ml"]})
# Auto-creates hierarchical (series), temporal (part 1 โ 2), and associative (author) relationships!
content_network = content_system.intelligent_content_discovery("machine learning basics", "series")
# Discovers complete content series and learning progressions automatically!# Core auto-dimension detection capabilities
db = rudradb.RudraDB()
# Check auto-detection status
print(f"Auto-detection enabled: {db.is_auto_dimension_detection_enabled()}") # True
print(f"Current dimension: {db.dimension()}") # None (until first vector)
# Add vector - auto-detection triggers
embedding = np.random.rand(512).astype(np.float32)
db.add_vector("test", embedding)
print(f"Auto-detected dimension: {db.dimension()}") # 512
# Advanced auto-detection info
detection_info = db.get_auto_dimension_info()
print(f"Detection confidence: {detection_info['confidence']:.2%}")
print(f"Detection method: {detection_info['method']}")
print(f"Supports dimension: {detection_info['supports_dimension']}")# Advanced auto-relationship capabilities
db = rudradb.RudraDB()
# Configure auto-relationship detection
auto_config = rudradb.create_auto_relationship_config(
enabled=True,
similarity_threshold=0.7,
max_relationships_per_vector=5,
algorithms=["metadata_analysis", "content_similarity", "semantic_clustering"],
min_confidence=0.6
)
db.enable_auto_relationships(auto_config)
# Add vectors with rich metadata for auto-detection
docs = [
("ai_basics", embedding1, {"category": "AI", "difficulty": "beginner", "tags": ["ai", "intro"], "type": "concept"}),
("ml_advanced", embedding2, {"category": "AI", "difficulty": "advanced", "tags": ["ml", "algorithms"], "type": "concept"}),
("python_example", embedding3, {"category": "Programming", "difficulty": "intermediate", "tags": ["python", "code"], "type": "example"})
]
for doc_id, emb, metadata in docs:
db.add_vector_with_auto_relationships(doc_id, emb, metadata, auto_relationships=True)
# Manual relationship detection for existing vectors
candidates = db.detect_relationships_for_vector("ai_basics")
print(f"Auto-detected relationship candidates: {len(candidates)}")
for candidate in candidates:
print(f" {candidate['source_id']} โ {candidate['target_id']}")
print(f" Type: {candidate['relationship_type']} (confidence: {candidate['confidence']:.2f})")
print(f" Algorithm: {candidate['algorithm']}")
# Batch auto-detection for all vectors
all_candidates = db.batch_detect_relationships()
print(f"Total relationship candidates detected: {len(all_candidates)}")# Advanced auto-enhanced search capabilities
db = rudradb.RudraDB()
# Auto-enhanced search parameters
auto_params = rudradb.SearchParams(
top_k=10,
include_relationships=True,
max_hops=2,
# ๐ค Auto-enhancement options
auto_enhance=True, # Enable all auto-optimizations
auto_balance_weights=True, # Auto-balance similarity vs relationships
auto_select_relationship_types=True, # Auto-choose relevant relationship types
auto_optimize_hops=True, # Auto-optimize traversal depth
auto_calibrate_threshold=True, # Auto-adjust similarity threshold
# Manual overrides (optional)
relationship_weight=0.3, # Can override auto-balancing
similarity_threshold=0.1 # Can override auto-calibration
)
# Perform auto-enhanced search
results = db.search(query_embedding, auto_params)
# Analyze auto-enhancement impact
enhancement_stats = db.get_last_search_enhancement_stats()
print(f"Auto-enhancements applied:")
print(f" Weight auto-balanced: {enhancement_stats['weight_balanced']}")
print(f" Relationship types auto-selected: {enhancement_stats['types_selected']}")
print(f" Traversal depth auto-optimized: {enhancement_stats['hops_optimized']}")
print(f" Threshold auto-calibrated: {enhancement_stats['threshold_calibrated']}")
print(f" Performance improvement: {enhancement_stats['performance_gain']:.1%}")
# Advanced result analysis
for result in results:
print(f"Document: {result.vector_id}")
print(f" Connection: {'Direct' if result.hop_count == 0 else f'{result.hop_count}-hop auto-discovery'}")
print(f" Scores: Similarity={result.similarity_score:.3f}, Combined={result.combined_score:.3f}")
print(f" Enhancement: {'Auto-discovered' if result.hop_count > 0 else 'Direct similarity'}")# Comprehensive database analytics
stats = db.get_statistics()
# Auto-feature performance metrics
auto_stats = db.get_auto_feature_statistics()
print(f"๐ฏ Auto-Dimension Detection:")
print(f" Accuracy: {auto_stats['dimension_detection_accuracy']:.2%}")
print(f" Models supported: {auto_stats['models_supported']}")
print(f" Average detection time: {auto_stats['avg_detection_time_ms']:.1f}ms")
print(f"๐ง Auto-Relationship Detection:")
print(f" Relationships auto-created: {auto_stats['relationships_auto_created']}")
print(f" Detection accuracy: {auto_stats['relationship_detection_accuracy']:.2%}")
print(f" Average confidence: {auto_stats['avg_relationship_confidence']:.2%}")
print(f" Most effective algorithm: {auto_stats['top_detection_algorithm']}")
print(f"โก Auto-Performance Optimization:")
print(f" Search speed improvement: {auto_stats['search_speed_improvement']:.1%}")
print(f" Memory usage optimization: {auto_stats['memory_optimization']:.1%}")
print(f" Index optimization level: {auto_stats['index_optimization_level']}")
# Capacity and upgrade insights
capacity_info = db.get_capacity_insights()
print(f"๐ Capacity Status:")
print(f" Vector usage: {capacity_info['vector_usage_percent']:.1f}%")
print(f" Relationship usage: {capacity_info['relationship_usage_percent']:.1f}%")
print(f" Estimated time to capacity: {capacity_info['estimated_days_to_capacity']} days")
print(f" Upgrade recommendation: {'Consider upgrade' if capacity_info['should_upgrade'] else 'Current capacity sufficient'}")
# Performance benchmarks
benchmark_results = db.run_performance_benchmark()
print(f"๐ Performance Benchmarks:")
print(f" Vector addition: {benchmark_results['vector_add_per_sec']:.0f} vectors/sec")
print(f" Search latency: {benchmark_results['avg_search_latency_ms']:.1f}ms")
print(f" Relationship creation: {benchmark_results['relationship_add_per_sec']:.0f} relationships/sec")
print(f" Auto-enhancement overhead: {benchmark_results['auto_enhancement_overhead_percent']:.1f}%")# Advanced database configuration for power users
advanced_config = {
# Auto-dimension detection settings
"auto_dimension": {
"enabled": True,
"confidence_threshold": 0.95,
"fallback_dimension": None,
"validation_samples": 3
},
# Auto-relationship detection settings
"auto_relationships": {
"enabled": True,
"background_processing": True,
"max_analysis_candidates": 50,
"algorithms": ["metadata_analysis", "content_similarity", "semantic_clustering"],
"relationship_strength_calibration": "auto",
"confidence_weighting": "adaptive"
},
# Auto-performance optimization settings
"auto_performance": {
"enabled": True,
"adaptive_indexing": True,
"memory_optimization": True,
"search_query_optimization": True,
"relationship_caching": True
},
# Limits and thresholds (Opin-specific)
"limits": {
"max_vectors": 100,
"max_relationships": 500,
"max_hops": 2,
"enforce_limits": True,
"upgrade_suggestions": True
}
}
# Apply advanced configuration
db = rudradb.RudraDB(config=advanced_config)
# Monitor auto-optimization in real-time
optimization_monitor = db.get_optimization_monitor()
print(f"๐ง Real-time Optimization Status:")
print(f" Index optimization: {'โ
Active' if optimization_monitor['indexing_active'] else 'โธ๏ธ Idle'}")
print(f" Relationship analysis: {'โ
Processing' if optimization_monitor['relationship_analysis_active'] else 'โธ๏ธ Idle'}")
print(f" Memory optimization: {'โ
Optimized' if optimization_monitor['memory_optimized'] else 'โ ๏ธ Can improve'}")
print(f" Query optimization: {'โ
Adaptive' if optimization_monitor['query_optimization_active'] else 'โธ๏ธ Standard'}")
# Manual optimization triggers (when auto isn't enough)
db.trigger_manual_optimization(
rebuild_indices=True,
optimize_relationships=True,
defragment_storage=True,
recalibrate_thresholds=True
)
# Diagnostic and troubleshooting
diagnostics = db.run_diagnostics()
print(f"๐ฅ System Diagnostics:")
print(f" Overall health: {diagnostics['overall_health']} ({diagnostics['health_score']:.0f}/100)")
print(f" Auto-features status: {diagnostics['auto_features_status']}")
print(f" Performance grade: {diagnostics['performance_grade']}")
print(f" Optimization suggestions: {len(diagnostics['optimization_suggestions'])}")
for suggestion in diagnostics['optimization_suggestions']:
print(f" ๐ก {suggestion['category']}: {suggestion['description']}")
print(f" Expected improvement: {suggestion['expected_improvement']}")# Monitor your usage to know when to upgrade
stats = db.get_statistics()
capacity = stats['capacity_usage']
print(f"๐ Current Usage:")
print(f" Vectors: {stats['vector_count']}/100 ({capacity['vector_usage_percent']:.1f}%)")
print(f" Relationships: {stats['relationship_count']}/500 ({capacity['relationship_usage_percent']:.1f}%)")
# Upgrade recommendations
upgrade_analysis = db.get_upgrade_analysis()
print(f"\n๐ Upgrade Analysis:")
print(f" Should upgrade: {'โ
Yes' if upgrade_analysis['should_upgrade'] else 'โ Not yet'}")
print(f" Reason: {upgrade_analysis['primary_reason']}")
print(f" Benefits: {', '.join(upgrade_analysis['upgrade_benefits'])}")
print(f" Estimated time to capacity: {upgrade_analysis['days_until_capacity_reached']} days")
# Auto-upgrade preparation
if upgrade_analysis['should_upgrade']:
print(f"\n๐ฆ Upgrade Preparation:")
# 1. Export your data
export_data = db.export_data()
with open('rudradb_opin_export.json', 'w') as f:
json.dump(export_data, f)
print(f" โ
Data exported: {len(export_data['vectors'])} vectors, {len(export_data['relationships'])} relationships")
# 2. Generate upgrade script
upgrade_script = db.generate_upgrade_script()
with open('upgrade_to_full_rudradb.py', 'w') as f:
f.write(upgrade_script)
print(f" โ
Upgrade script generated: upgrade_to_full_rudradb.py")
# 3. Show upgrade commands
print(f"\n๐ฏ Upgrade Commands:")
print(f" pip uninstall rudradb-opin")
print(f" pip install rudradb")
print(f" python upgrade_to_full_rudradb.py")# Complete upgrade workflow with data preservation
class RudraDB_Upgrade_Assistant:
def __init__(self, opin_db):
self.opin_db = opin_db
self.backup_created = False
self.migration_log = []
def create_upgrade_backup(self):
"""Create comprehensive backup before upgrade"""
backup_data = {
"metadata": {
"opin_version": rudradb.__version__,
"export_timestamp": datetime.now().isoformat(),
"vector_count": self.opin_db.vector_count(),
"relationship_count": self.opin_db.relationship_count(),
"dimension": self.opin_db.dimension()
},
"database": self.opin_db.export_data(),
"configuration": self.opin_db.get_configuration(),
"statistics": self.opin_db.get_statistics()
}
with open('rudradb_opin_complete_backup.json', 'w') as f:
json.dump(backup_data, f, indent=2)
self.backup_created = True
self.migration_log.append("โ
Complete backup created")
return backup_data
def validate_upgrade_readiness(self):
"""Validate system is ready for upgrade"""
checks = []
# Check 1: Data integrity
integrity_ok = self.opin_db.verify_integrity()
checks.append(("Data integrity", "โ
Pass" if integrity_ok else "โ Fail"))
# Check 2: Export capability
try:
test_export = self.opin_db.export_data()
export_ok = len(test_export.get('vectors', [])) > 0
checks.append(("Export capability", "โ
Pass" if export_ok else "โ Fail"))
except:
checks.append(("Export capability", "โ Fail"))
# Check 3: Backup created
checks.append(("Backup created", "โ
Pass" if self.backup_created else "โ Pending"))
# Check 4: Sufficient disk space
import shutil
free_space = shutil.disk_usage('.').free / (1024**3) # GB
space_ok = free_space > 1 # Need at least 1GB
checks.append(("Disk space", f"โ
{free_space:.1f}GB available" if space_ok else f"โ Only {free_space:.1f}GB"))
all_passed = all("โ
" in check[1] for check in checks)
print("๐ Upgrade Readiness Check:")
for check_name, status in checks:
print(f" {check_name}: {status}")
return all_passed, checks
def generate_migration_script(self):
"""Generate complete migration script"""
script_template = '''#!/usr/bin/env python3
"""
Automated RudraDB-Opin to RudraDB Upgrade Script
Generated automatically to preserve all your data and relationships.
"""
import json
import rudradb
import numpy as np
from datetime import datetime
def main():
print("๐ Starting RudraDB-Opin โ RudraDB Upgrade")
print("=" * 50)
# Load backup data
print("๐ Loading backup data...")
with open('rudradb_opin_complete_backup.json', 'r') as f:
backup_data = json.load(f)
original_stats = backup_data['metadata']
print(f" Original database: {original_stats['vector_count']} vectors, {original_stats['relationship_count']} relationships")
print(f" Dimension: {original_stats['dimension']}")
# Create new full RudraDB instance
print("\\n๐งฌ Creating full RudraDB instance...")
# Preserve original dimension if detected
if original_stats['dimension']:
full_db = rudradb.RudraDB(dimension=original_stats['dimension'])
else:
full_db = rudradb.RudraDB() # Auto-dimension detection
print(f" โ
Full RudraDB created")
# Import all data
print("\\n๐ฅ Importing data...")
try:
full_db.import_data(backup_data['database'])
print(f" โ
Data import successful")
# Verify import
new_stats = full_db.get_statistics()
print(f" ๐ Verification: {new_stats['vector_count']} vectors, {new_stats['relationship_count']} relationships")
if new_stats['vector_count'] == original_stats['vector_count']:
print(" โ
All vectors successfully migrated")
else:
print(f" โ ๏ธ Vector count mismatch: {new_stats['vector_count']} vs {original_stats['vector_count']}")
if new_stats['relationship_count'] == original_stats['relationship_count']:
print(" โ
All relationships successfully migrated")
else:
print(f" โ ๏ธ Relationship count mismatch: {new_stats['relationship_count']} vs {original_stats['relationship_count']}")
# Test functionality
print("\\n๐ Testing upgraded functionality...")
# Test search
if new_stats['vector_count'] > 0:
sample_vector_id = full_db.list_vectors()[0]
sample_vector = full_db.get_vector(sample_vector_id)
sample_embedding = sample_vector['embedding']
search_results = full_db.search(sample_embedding, rudradb.SearchParams(
top_k=5,
include_relationships=True
))
print(f" โ
Search test: {len(search_results)} results returned")
# Show upgrade benefits
print("\\n๐ Upgrade Complete! New Capabilities:")
print(f" ๐ Vectors: 100 โ {new_stats.get('max_vectors', 'Unlimited')}")
print(f" ๐ Relationships: 500 โ {new_stats.get('max_relationships', 'Unlimited')}")
print(f" ๐ฏ Multi-hop traversal: 2 โ {new_stats.get('max_hops', 'Unlimited')} hops")
print(f" โจ All auto-features preserved and enhanced")
print(f" ๐ Production-ready with enterprise features")
print("\\n๐พ Upgrade completed successfully!")
print("Your RudraDB-Opin data is now running on full RudraDB with unlimited capacity!")
except Exception as e:
print(f" โ Import failed: {e}")
print(" ๐ก Contact support at upgrade@rudradb.com for assistance")
return False
return True
if __name__ == "__main__":
success = main()
exit(0 if success else 1)
'''
with open('automated_upgrade_script.py', 'w') as f:
f.write(script_template)
self.migration_log.append("โ
Migration script generated")
return 'automated_upgrade_script.py'
def execute_pre_upgrade_checklist(self):
"""Complete pre-upgrade checklist"""
print("๐ Pre-Upgrade Checklist:")
# Step 1: Create backup
if not self.backup_created:
print(" 1. Creating backup...")
self.create_upgrade_backup()
else:
print(" 1. โ
Backup already created")
# Step 2: Validate readiness
print(" 2. Validating upgrade readiness...")
ready, checks = self.validate_upgrade_readiness()
if not ready:
print(" โ System not ready for upgrade")
return False
# Step 3: Generate migration script
print(" 3. Generating migration script...")
script_path = self.generate_migration_script()
# Step 4: Final instructions
print("\\n๐ฏ Ready to Upgrade!")
print(" Execute these commands in order:")
print(" 1. pip uninstall rudradb-opin")
print(" 2. pip install rudradb")
print(f" 3. python {script_path}")
return True
# ๐ Demo: Upgrade preparation
upgrade_assistant = RudraDB_Upgrade_Assistant(db)
upgrade_ready = upgrade_assistant.execute_pre_upgrade_checklist()
if upgrade_ready:
print("\\nโ
Your RudraDB-Opin database is ready for upgrade!")
print("๐ Follow the commands above to unlock unlimited capacity!")| Feature | RudraDB-Opin (Free) | RudraDB (Full) | Enterprise |
|---|---|---|---|
| Vectors | 100 | 100,000+ | Unlimited |
| Relationships | 500 | 250,000+ | Unlimited |
| Multi-hop traversal | 2 hops | 10 hops | Unlimited |
| ๐ฏ Auto-Dimension Detection | โ Full support | โ Enhanced + custom models | โ Advanced + proprietary models |
| ๐ง Auto-Relationship Detection | โ 5 algorithms | โ 15+ advanced algorithms | โ Custom AI + domain-specific |
| ๐ Auto-Performance Optimization | โ Self-tuning | โ Advanced + custom tuning | โ Enterprise AI optimization |
| Auto-Search Enhancement | โ Standard intelligence | โ Advanced + learning algorithms | โ Custom neural enhancement |
| Custom relationship types | โ 5 standard types | โ Custom types supported | โ Unlimited custom types |
| Distributed processing | โ Single instance | โ Multi-node support | โ Enterprise clustering |
| Advanced analytics | Basic stats | โ Advanced analytics | โ AI-powered insights |
| API rate limits | Educational use | Production ready | Enterprise SLA |
| Support level | Community | Priority support | Dedicated support |
| Commercial use | Learning/Tutorial only | โ Full commercial | โ Enterprise license |
- ๐ Issues: Bug reports and feature requests at GitHub Issues
- ๐ฌ Discussions: Q&A, sharing examples, and community help at GitHub Discussions
- ๐ Documentation: Complete guides and API documentation
- ๐ Examples: Community-contributed examples and tutorials
# Built-in help system
import rudradb
# Get help and resources
print("๐ RudraDB-Opin Help & Resources:")
print(f" ๐ Documentation: Available in-code and online")
print(f" ๐ฌ Community: GitHub Discussions for Q&A")
print(f" ๐ Issues: GitHub Issues for bugs and features")
print(f" ๐ Upgrade: {rudradb.UPGRADE_URL}")
# Check version and auto-feature info
print(f"\n๐ง Your Installation:")
print(f" Version: {rudradb.__version__}")
print(f" Edition: {rudradb.EDITION}")
print(f" Auto-dimension detection: {getattr(rudradb, 'AUTO_DIMENSION_DETECTION', 'Available')}")
print(f" Auto-relationship detection: {getattr(rudradb, 'AUTO_RELATIONSHIP_DETECTION', 'Available')}")
# Quick system test
db = rudradb.RudraDB()
print(f"\nโ
System Status:")
print(f" Database creation: Working")
print(f" Auto-features: Enabled")
print(f" Ready for AI development: Yes")- ๐ค Be Helpful: Share knowledge and assist other developers
- ๐ Clear Issues: Provide detailed bug reports with reproduction steps
- ๐ฏ Focused Discussions: Keep topics relevant to RudraDB-Opin and relationship-aware search
- ๐ Share Examples: Contribute tutorials, integration examples, and use cases
- ๐ Educational Focus: Remember this is a learning-oriented tool - help others learn!
- ๐ง Email: upgrade@rudradb.com
- ๐ Website: rudradb.com/upgrade.html
- ๐ Schedule: Free 30-minute consultation for upgrade planning
- ๐ฏ Custom Solutions: Tailored enterprise deployments
- โ๏ธ Cloud Deployment: Managed RudraDB instances
- ๐ง Custom Integration: Specialized ML framework integrations
- ๐ Advanced Analytics: AI-powered relationship insights
- ๐ก๏ธ Security: Enterprise security and compliance features
- โก Performance: Unlimited scale with advanced auto-optimization
- ๐จโ๐ผ Dedicated Support: 24/7 enterprise support team
# Perfect for teaching vector databases and AI concepts
class VectorDatabase_Course:
def __init__(self):
self.db = rudradb.RudraDB() # Auto-detects any model students use
def lesson_1_basics(self):
"""Lesson 1: Vector basics with auto-dimension detection"""
print("๐ Lesson 1: Understanding Vector Databases")
# Students can use any embedding model - auto-detection handles it
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('all-MiniLM-L6-v2')
# Demonstrate auto-dimension detection
embedding = model.encode(["AI is transforming the world"])[0]
self.db.add_vector("lesson1", embedding.astype(np.float32), {
"lesson": 1, "topic": "basics", "content": "Vector storage and retrieval"
})
print(f" ๐ฏ Auto-detected embedding dimension: {self.db.dimension()}D")
print(" โ
Students learn without worrying about configuration!")
def lesson_2_relationships(self):
"""Lesson 2: Relationship-aware search"""
print("๐ Lesson 2: Beyond Similarity - Relationship Intelligence")
# Add more documents with relationships
topics = [
("ai_intro", "Introduction to Artificial Intelligence", "beginner"),
("ml_basics", "Machine Learning Fundamentals", "intermediate"),
("dl_advanced", "Deep Learning Neural Networks", "advanced")
]
for doc_id, content, difficulty in topics:
embedding = model.encode([content])[0].astype(np.float32)
self.db.add_vector(doc_id, embedding, {
"content": content,
"difficulty": difficulty,
"subject": "AI",
"type": "educational"
})
# Auto-create educational relationships
self.db.add_relationship("ai_intro", "ml_basics", "hierarchical", 0.9, {"learning_path": True})
self.db.add_relationship("ml_basics", "dl_advanced", "temporal", 0.8, {"progression": True})
print(f" ๐ง Created learning progression relationships automatically")
print(f" ๐ Database: {self.db.vector_count()} concepts, {self.db.relationship_count()} connections")
def demonstrate_power(self, query="machine learning concepts"):
"""Show the power of relationship-aware search to students"""
model = SentenceTransformer('all-MiniLM-L6-v2')
query_emb = model.encode([query])[0].astype(np.float32)
# Traditional search
basic_results = self.db.search(query_emb, rudradb.SearchParams(include_relationships=False))
# Relationship-aware search
enhanced_results = self.db.search(query_emb, rudradb.SearchParams(
include_relationships=True, max_hops=2, relationship_weight=0.4
))
print(f"๐ Search Comparison for: '{query}'")
print(f" Traditional search: {len(basic_results)} results")
print(f" Relationship-aware: {len(enhanced_results)} results")
print(f" ๐ฏ Additional discoveries: {len(enhanced_results) - len(basic_results)} through relationships")
return {
"traditional": len(basic_results),
"relationship_aware": len(enhanced_results),
"improvement": len(enhanced_results) - len(basic_results)
}
# ๐ Perfect for AI/ML curriculum integration
course = VectorDatabase_Course()
course.lesson_1_basics()
course.lesson_2_relationships()
results = course.demonstrate_power()
print(f"\n๐ Students see {results['improvement']} more relevant results with relationship intelligence!")- ๐ Free Forever: Complete access to relationship-aware vector database technology
- ๐ Learning Path: Structured progression from basics to advanced concepts
- ๐ ๏ธ Hands-on Projects: Real-world AI/ML integration examples
- ๐ฏ Auto-Features: Focus on concepts, not configuration complexity
- ๐ Upgrade Path: Natural progression to production-ready skills
- ๐ Academic Use: Perfect for research papers and prototype development
- ๐ฌ Experimentation: Test relationship-aware search hypotheses
- ๐ Benchmarking: Compare against traditional vector databases
- ๐ค Collaboration: Share reproducible research with 100-vector datasets
- ๐ Publication: Use in academic papers (MIT license, attribution appreciated)
# Example: Contributing a new integration tutorial
class NewFramework_RudraDB_Tutorial:
"""Template for contributing framework integration tutorials"""
def __init__(self, framework_name):
self.framework = framework_name
self.db = rudradb.RudraDB() # Always use auto-dimension detection in examples
def create_tutorial(self):
"""Create a comprehensive tutorial showing auto-features"""
# 1. Demonstrate auto-dimension detection
print(f"๐ฏ {self.framework} + RudraDB-Opin Auto-Dimension Detection:")
# ... your framework-specific embedding code ...
# Always show dimension auto-detection in action
# 2. Demonstrate auto-relationship detection
print(f"๐ง {self.framework} + Auto-Relationship Intelligence:")
# ... show how auto-relationship detection works with your framework ...
# 3. Demonstrate enhanced search capabilities
print(f"๐ {self.framework} + Auto-Enhanced Search:")
# ... show relationship-aware search examples ...
def add_to_documentation(self):
"""Guidelines for adding to official documentation"""
contribution_checklist = {
"โ
Framework integration working": True,
"โ
Auto-features demonstrated": True,
"โ
Educational value clear": True,
"โ
Code commented and clean": True,
"โ
Example data within 100-vector limit": True,
"โ
Relationship examples included": True,
"โ
Performance considerations noted": True
}
return contribution_checklist
# Contributing guidelines for tutorials:
# 1. Focus on educational value
# 2. Always demonstrate auto-features (dimension detection, relationship building)
# 3. Keep examples within Opin limits (100 vectors, 500 relationships)
# 4. Show practical, real-world applications
# 5. Include clear explanations for beginners# Example: Contributing auto-relationship detection improvements
def contribute_auto_relationship_algorithm(algorithm_name, detection_function):
"""Template for contributing new auto-relationship detection algorithms"""
def new_detection_algorithm(vector_metadata_a, vector_metadata_b):
"""
Contribute a new auto-relationship detection algorithm
Args:
vector_metadata_a: Metadata dict from first vector
vector_metadata_b: Metadata dict from second vector
Returns:
{
"should_create_relationship": bool,
"relationship_type": str, # semantic, hierarchical, temporal, causal, associative
"strength": float, # 0.0 to 1.0
"confidence": float, # 0.0 to 1.0
"reasoning": str # Explanation for educational purposes
}
"""
# Example: Domain-specific relationship detection
if (vector_metadata_a.get('domain') == 'education' and
vector_metadata_b.get('domain') == 'education'):
# Learning prerequisite detection
level_a = vector_metadata_a.get('difficulty_level', 0)
level_b = vector_metadata_b.get('difficulty_level', 0)
if abs(level_a - level_b) == 1: # Sequential learning levels
return {
"should_create_relationship": True,
"relationship_type": "temporal",
"strength": 0.9,
"confidence": 0.85,
"reasoning": f"Learning progression: level {min(level_a, level_b)} โ {max(level_a, level_b)}"
}
return {
"should_create_relationship": False,
"confidence": 0.0,
"reasoning": "No educational progression pattern detected"
}
# Integration example
return {
"algorithm_name": algorithm_name,
"detection_function": detection_function,
"contribution_type": "auto_relationship_enhancement",
"educational_value": "Helps automatically build learning paths",
"use_cases": ["educational content", "course materials", "tutorial systems"]
}
# Contribution areas for auto-features:
# 1. New relationship detection algorithms
# 2. Dimension detection improvements for new model types
# 3. Auto-performance optimization enhancements
# 4. Domain-specific auto-relationship patterns
# 5. Educational auto-feature improvements# Example: Contributing comprehensive tests
class RudraDB_Opin_Test_Suite:
"""Template for contributing test improvements"""
def test_auto_dimension_detection_comprehensive(self):
"""Test auto-dimension detection with various embedding models"""
test_dimensions = [128, 256, 384, 512, 768, 1024, 1536]
for dim in test_dimensions:
db = rudradb.RudraDB() # Fresh auto-detection
test_embedding = np.random.rand(dim).astype(np.float32)
# Test auto-detection
db.add_vector(f"test_{dim}", test_embedding, {"test": True})
detected_dim = db.dimension()
assert detected_dim == dim, f"Auto-detection failed: expected {dim}, got {detected_dim}"
print(f"โ
Auto-dimension detection: {dim}D successful")
def test_auto_relationship_quality(self):
"""Test auto-relationship detection quality and accuracy"""
db = rudradb.RudraDB()
# Add documents with known relationships
test_docs = [
("intro_ai", {"category": "AI", "difficulty": "beginner", "tags": ["ai", "intro"]}),
("advanced_ai", {"category": "AI", "difficulty": "advanced", "tags": ["ai", "complex"]}),
("python_basics", {"category": "Programming", "difficulty": "beginner", "tags": ["python", "intro"]})
]
for doc_id, metadata in test_docs:
embedding = np.random.rand(384).astype(np.float32)
db.add_vector(doc_id, embedding, metadata)
# Test auto-relationship detection
candidates = db.batch_detect_relationships()
# Validate expected relationships
expected_semantic = any(
c['source_id'] in ['intro_ai', 'advanced_ai'] and
c['target_id'] in ['intro_ai', 'advanced_ai'] and
c['relationship_type'] == 'semantic'
for c in candidates
)
assert expected_semantic, "Expected semantic relationship between AI documents not detected"
print("โ
Auto-relationship detection quality verified")
def test_educational_workflow_complete(self):
"""Test complete educational workflow"""
db = rudradb.RudraDB()
# Simulate typical educational usage
lesson_progression = [
("lesson_1", "Introduction to concepts", "beginner"),
("lesson_2", "Intermediate applications", "intermediate"),
("lesson_3", "Advanced techniques", "advanced")
]
for lesson_id, content, difficulty in lesson_progression:
embedding = np.random.rand(384).astype(np.float32)
db.add_vector(lesson_id, embedding, {
"content": content,
"difficulty": difficulty,
"type": "lesson",
"subject": "AI"
})
# Test relationship-aware search for learning path discovery
query_emb = np.random.rand(384).astype(np.float32)
results = db.search(query_emb, rudradb.SearchParams(
include_relationships=True,
relationship_types=["temporal", "hierarchical"],
max_hops=2
))
# Verify educational workflow
assert len(results) > 0, "Educational search workflow failed"
assert db.vector_count() == 3, "Vector storage in educational workflow failed"
print("โ
Complete educational workflow verified")
# Test contribution guidelines:
# 1. Test auto-features thoroughly
# 2. Cover educational use cases
# 3. Test within Opin limits (100 vectors, 500 relationships)
# 4. Include performance benchmarks
# 5. Test error handling and edge cases
# 6. Verify relationship quality and accuracy# Fork and clone
git clone https://github.com/your-username/rudradb-opin.git
cd rudradb-opin
# Setup development environment
python -m venv venv
source venv/bin/activate # or venv\Scripts\activate on Windows
# Install development dependencies
pip install -r requirements-dev.txt
pip install -e . # Editable install
# Verify installation
python -c "import rudradb; print(f'โ
RudraDB-Opin {rudradb.__version__} development setup complete')"# Code quality standards for contributions
class Contribution_Standards:
"""Standards for RudraDB-Opin contributions"""
def code_style(self):
return {
"python": "PEP 8 compliance required",
"rust": "rustfmt and clippy clean",
"comments": "Explain educational concepts clearly",
"docstrings": "Include usage examples",
"type_hints": "Use type hints for Python code",
"error_handling": "Comprehensive error messages"
}
def testing_requirements(self):
return {
"unit_tests": "All new functionality must have tests",
"integration_tests": "Test auto-features integration",
"educational_tests": "Verify educational value",
"performance_tests": "Ensure performance within Opin limits",
"documentation_tests": "Verify examples work as documented"
}
def educational_focus(self):
return {
"beginners": "Code should be understandable by AI/ML beginners",
"examples": "Include real-world, practical examples",
"auto_features": "Always demonstrate auto-dimension detection and auto-relationships",
"limits": "Work within 100 vectors, 500 relationships",
"progression": "Show upgrade path to full RudraDB when appropriate"
}- ๐ Check existing issues - Avoid duplicate work
- ๐ฌ Discuss first - For major changes, open a discussion issue
- ๐งช Test thoroughly - Run full test suite
- ๐ Document well - Update docs and examples
- ๐ Submit PR - Clear description with before/after examples
# What reviewers look for
review_criteria = {
"educational_value": "Does this help people learn relationship-aware search?",
"auto_features": "Does this properly demonstrate auto-intelligence?",
"code_quality": "Is the code clean, documented, and tested?",
"compatibility": "Works within Opin limits and constraints?",
"examples": "Includes practical, working examples?",
"performance": "Maintains good performance characteristics?",
"upgrade_path": "Compatible with upgrade to full RudraDB?"
}- ๐ Featured Contributors - Recognition on project homepage
- ๐ Tutorial Authors - Byline on official documentation
- ๐ง Auto-Feature Contributors - Credit in release notes
- ๐ Educational Contributors - Special recognition for learning resources
- ๐ฏ Auto-Features Expert - Contributed auto-intelligence improvements
- ๐ Education Champion - Created exceptional learning resources
- ๐งช Testing Hero - Significantly improved test coverage
- ๐ Documentation Master - Outstanding documentation contributions
- ๐ค Community Leader - Helped others and fostered community
# Issue: Dimension not auto-detected
db = rudradb.RudraDB()
print(f"Dimension before adding vector: {db.dimension()}") # None - expected!
# Solution: Add your first vector to trigger auto-detection
embedding = np.random.rand(384).astype(np.float32)
db.add_vector("first", embedding, {"test": True})
print(f"Dimension after first vector: {db.dimension()}") # 384 - auto-detected!
# Issue: "Dimension mismatch" error
try:
wrong_embedding = np.random.rand(512).astype(np.float32) # Different dimension
db.add_vector("second", wrong_embedding, {"test": True})
except Exception as e:
print(f"Expected error: {e}")
print("Solution: Use consistent embedding dimensions or create new database instance")
# Issue: Want to change embedding model
# Solution: Create new database instance for different dimensions
db_384 = rudradb.RudraDB() # For 384D embeddings
db_768 = rudradb.RudraDB() # For 768D embeddings (separate instance)# Issue: Hit vector limit
try:
for i in range(101): # Try to exceed 100 vectors
db.add_vector(f"vec_{i}", np.random.rand(384).astype(np.float32))
except Exception as e:
print("Hit vector limit - this is expected in Opin!")
print(f"Helpful error message: {str(e)[:100]}...")
# Solution options:
print("Solutions:")
print("1. Use fewer vectors for learning/tutorials (recommended)")
print("2. Focus on relationship quality over quantity")
print("3. Upgrade to full RudraDB for production use")
print("4. Export/import to manage different datasets")
# Issue: Hit relationship limit
try:
# Add many relationships to test limit
for i in range(10):
for j in range(50): # Try to create 500+ relationships
if i != j:
db.add_relationship(f"vec_{i}", f"vec_{j}", "associative", 0.5)
except Exception as e:
print("Hit relationship limit - this is expected in Opin!")
print("Solution: Focus on quality relationships, use auto-relationship detection")# Issue: Slow search performance
db = rudradb.RudraDB()
# Add test data
for i in range(100): # Use full capacity
embedding = np.random.rand(384).astype(np.float32)
db.add_vector(f"doc_{i}", embedding, {"index": i})
# Performance optimization
import time
# Measure search performance
query = np.random.rand(384).astype(np.float32)
start_time = time.time()
results = db.search(query, rudradb.SearchParams(top_k=10))
search_time = time.time() - start_time
print(f"Search time: {search_time*1000:.1f}ms")
if search_time > 0.1: # > 100ms
print("Performance tips:")
print("1. Reduce top_k if you don't need many results")
print("2. Use similarity_threshold to filter low-quality results")
print("3. Limit relationship traversal with max_hops")
print("4. Consider upgrading for advanced performance optimization")
# Optimized search example
optimized_results = db.search(query, rudradb.SearchParams(
top_k=5, # Fewer results
similarity_threshold=0.3, # Filter low similarity
max_hops=1 # Limit traversal depth
))# Issue: Not enough relationships detected automatically
db = rudradb.RudraDB()
# Add documents with minimal metadata
db.add_vector("doc1", np.random.rand(384).astype(np.float32), {"text": "AI content"})
db.add_vector("doc2", np.random.rand(384).astype(np.float32), {"text": "ML content"})
relationships_before = db.relationship_count()
print(f"Relationships with minimal metadata: {relationships_before}")
# Solution: Provide richer metadata for better auto-detection
db_rich = rudradb.RudraDB()
db_rich.add_vector("doc1", np.random.rand(384).astype(np.float32), {
"text": "Artificial Intelligence introduction and concepts",
"category": "AI",
"difficulty": "beginner",
"tags": ["ai", "introduction", "concepts"],
"type": "educational",
"domain": "computer_science"
})
db_rich.add_vector("doc2", np.random.rand(384).astype(np.float32), {
"text": "Machine Learning algorithms and applications",
"category": "AI",
"difficulty": "intermediate",
"tags": ["ml", "algorithms", "applications"],
"type": "educational",
"domain": "computer_science"
})
# Manual relationship detection
candidates = db_rich.batch_detect_relationships()
print(f"Relationship candidates with rich metadata: {len(candidates)}")
print("Rich metadata enables better auto-relationship detection!")# โ
Good: Efficient usage within limits
class Efficient_RudraDB_Usage:
def __init__(self):
self.db = rudradb.RudraDB()
def add_documents_efficiently(self, documents):
"""Add documents with efficient relationship building"""
# Batch add all documents first
for doc_id, embedding, metadata in documents:
self.db.add_vector(doc_id, embedding, metadata)
# Then build relationships strategically
relationship_count = 0
max_relationships_per_doc = 5 # Stay well within 500 limit
for doc_id, _, metadata in documents:
if relationship_count >= 400: # Leave room for future relationships
break
doc_relationships = self.build_smart_relationships(
doc_id, metadata, max_connections=max_relationships_per_doc
)
relationship_count += doc_relationships
return {
"documents_added": len(documents),
"relationships_created": relationship_count,
"capacity_used_efficiently": True
}
def search_efficiently(self, query_embedding):
"""Search with optimal parameters for Opin"""
return self.db.search(query_embedding, rudradb.SearchParams(
top_k=10, # Reasonable result count
include_relationships=True, # Use relationships intelligently
max_hops=2, # Full Opin traversal capability
similarity_threshold=0.2, # Filter noise
relationship_weight=0.3 # Balanced scoring
))# Monitor memory usage
import sys
def get_database_memory_info(db):
"""Get memory usage information"""
stats = db.get_statistics()
# Estimate memory usage (rough approximation)
vector_memory = stats['vector_count'] * stats['dimension'] * 4 # 4 bytes per float32
relationship_memory = stats['relationship_count'] * 200 # Rough estimate per relationship
total_estimated = vector_memory + relationship_memory
return {
"vectors": stats['vector_count'],
"relationships": stats['relationship_count'],
"estimated_vector_memory_mb": vector_memory / (1024 * 1024),
"estimated_relationship_memory_mb": relationship_memory / (1024 * 1024),
"total_estimated_mb": total_estimated / (1024 * 1024),
"capacity_usage": stats['capacity_usage']
}
# Usage example
db = rudradb.RudraDB()
# Add some test data
for i in range(50):
embedding = np.random.rand(384).astype(np.float32)
db.add_vector(f"doc_{i}", embedding, {"index": i})
memory_info = get_database_memory_info(db)
print("๐พ Memory Usage Analysis:")
print(f" Vectors: {memory_info['vectors']} (estimated {memory_info['estimated_vector_memory_mb']:.2f}MB)")
print(f" Relationships: {memory_info['relationships']} (estimated {memory_info['estimated_relationship_memory_mb']:.2f}MB)")
print(f" Total estimated: {memory_info['total_estimated_mb']:.2f}MB")
print(f" Capacity used: {memory_info['capacity_usage']['vector_usage_percent']:.1f}% vectors")A: RudraDB-Opin is designed for learning, tutorials, and proof-of-concepts. For production use with more than 100 vectors, upgrade to full RudraDB. The upgrade process preserves all your data and relationships.
# A: Any embedding model works! Auto-dimension detection supports:
supported_models = [
"OpenAI (text-embedding-ada-002, text-embedding-3-small/large)",
"Sentence Transformers (any model from sentence-transformers library)",
"HuggingFace Transformers (any model producing embeddings)",
"Cohere embeddings",
"Custom embedding models (any numpy array of floats)",
"Even mixed models (different databases for different dimensions)"
]
for model in supported_models:
print(f"โ
{model}")
print("\n๐ฏ Auto-dimension detection eliminates configuration!")# A: RudraDB-Opin tells you when upgrade makes sense
db = rudradb.RudraDB()
# Check upgrade indicators
stats = db.get_statistics()
capacity = stats['capacity_usage']
upgrade_indicators = {
"vector_capacity": capacity['vector_usage_percent'] > 80,
"relationship_capacity": capacity['relationship_usage_percent'] > 80,
"production_ready": "Your prototype is working and ready for production scale",
"team_growth": "Multiple team members need access",
"performance_needs": "Need faster search or more advanced features"
}
print("๐ Upgrade Indicators:")
for indicator, status in upgrade_indicators.items():
if isinstance(status, bool):
print(f" {indicator}: {'โก Consider upgrade' if status else 'โ
Still good'}")
else:
print(f" {indicator}: {status}")# A: Yes! Complete data portability is built-in
db = rudradb.RudraDB()
# Add some test data
for i in range(10):
db.add_vector(f"doc_{i}", np.random.rand(384).astype(np.float32), {"test": i})
# Create some relationships
db.add_relationship("doc_0", "doc_1", "semantic", 0.8)
db.add_relationship("doc_1", "doc_2", "hierarchical", 0.9)
# Export everything
export_data = db.export_data()
print("๐ฆ Export includes:")
print(f" Vectors: {len(export_data.get('vectors', []))}")
print(f" Relationships: {len(export_data.get('relationships', []))}")
print(f" Metadata: All preserved")
print(f" Auto-detected dimension: {export_data.get('metadata', {}).get('dimension')}")
# Save to file
import json
with open('my_rudradb_export.json', 'w') as f:
json.dump(export_data, f, indent=2)
print("โ
Data exported and ready for upgrade import!")# A: Revolutionary auto-intelligence makes RudraDB-Opin unique
comparison = {
"Auto-Dimension Detection": {
"RudraDB-Opin": "โ
Works with any ML model automatically",
"ChromaDB": "โ Manual dimension configuration required",
"Pinecone Free": "โ Manual configuration required",
"Weaviate": "โ Schema definition required"
},
"Auto-Relationship Detection": {
"RudraDB-Opin": "โ
Builds intelligent connections automatically",
"Others": "โ No relationship intelligence"
},
"Relationship-Aware Search": {
"RudraDB-Opin": "โ
Multi-hop discovery with 5 relationship types",
"Others": "โ Only similarity search"
},
"Educational Focus": {
"RudraDB-Opin": "โ
Perfect size for learning (100 vectors)",
"Others": "โ Either too limited or too complex"
},
"Zero Configuration": {
"RudraDB-Opin": "โ
pip install and go",
"Others": "โ Complex setup, API keys, configuration"
}
}
print("๐ RudraDB-Opin Unique Advantages:")
for feature, implementations in comparison.items():
print(f"\n{feature}:")
for system, capability in implementations.items():
print(f" {system}: {capability}")# Future auto-features in development
future_auto_features = {
"Auto-Semantic Understanding": {
"description": "AI-powered content analysis for even smarter relationships",
"example": "Automatically understand document themes and topics",
"benefit": "Better relationship quality without manual tagging"
},
"Auto-Learning Optimization": {
"description": "Database learns from usage patterns to optimize performance",
"example": "Automatically optimize for your specific search patterns",
"benefit": "Performance improves the more you use it"
},
"Auto-Model Adaptation": {
"description": "Seamless switching between different embedding models",
"example": "Use OpenAI for some docs, Sentence Transformers for others",
"benefit": "Mixed-model support without configuration"
},
"Auto-Domain Detection": {
"description": "Automatically detect document domains for specialized relationship types",
"example": "Educational content gets learning progression relationships",
"benefit": "Domain-specific intelligence without manual setup"
}
}
print("๐ฎ Future Auto-Intelligence Features:")
for feature, details in future_auto_features.items():
print(f"\n๐ค {feature}")
print(f" ๐ {details['description']}")
print(f" ๐ก Example: {details['example']}")
print(f" โจ Benefit: {details['benefit']}")- ๐ Interactive Tutorials: Built-in guided tutorials for learning relationship-aware search
- ๐ฎ Gamification: Achievement system for learning vector database concepts
- ๐ฅ Classroom Mode: Multi-student environments for educational institutions
- ๐ Progress Tracking: Learning analytics for students and educators
- ๐งช Experiment Templates: Pre-built experiments for common AI/ML scenarios
# Research areas for community contribution
research_opportunities = {
"Relationship Quality Metrics": {
"challenge": "How to measure relationship quality automatically?",
"impact": "Better auto-relationship detection",
"community_involvement": "Share your relationship quality insights"
},
"Multi-Modal Auto-Detection": {
"challenge": "Auto-detect relationships across text, images, audio",
"impact": "Support for multi-modal AI applications",
"community_involvement": "Contribute multi-modal examples"
},
"Temporal Relationship Intelligence": {
"challenge": "Better understanding of time-based relationships",
"impact": "Enhanced temporal relationship detection",
"community_involvement": "Share temporal relationship use cases"
},
"Domain-Specific Auto-Features": {
"challenge": "Specialized auto-intelligence for different domains",
"impact": "Better performance in specialized applications",
"community_involvement": "Contribute domain expertise"
}
}
print("๐ฌ Research Opportunities for Community:")
for area, details in research_opportunities.items():
print(f"\n๐งช {area}")
print(f" ๐ฏ Challenge: {details['challenge']}")
print(f" ๐ฅ Impact: {details['impact']}")
print(f" ๐ค How to help: {details['community_involvement']}")Your feedback shapes RudraDB-Opin's future! Priority areas based on community input:
- Enhanced Auto-Relationship Detection (87% of users want this)
- More ML Framework Integrations (76% of users want this)
- Interactive Learning Tools (68% of users want this)
- Performance Improvements (63% of users want this)
- Advanced Analytics (54% of users want this)
# Ways to shape RudraDB-Opin's future
influence_methods = {
"GitHub Issues": "Request features, report bugs, suggest improvements",
"Community Discussions": "Share use cases, discuss needs, vote on features",
"Contributions": "Code contributions get prioritized in roadmap",
"Educational Content": "Create tutorials and examples that highlight needed features",
"Research Collaboration": "Academic partnerships influence research direction",
"Enterprise Feedback": "Production use cases from upgraded users guide development"
}
print("๐ณ๏ธ How to Influence RudraDB-Opin Development:")
for method, description in influence_methods.items():
print(f" {method}: {description}")
print(f"\n๐ก Your Voice Matters!")
print(f" ๐ง Feature requests: upgrade@rudradb.com")
print(f" ๐ฌ Community discussion: GitHub Discussions")
print(f" ๐ค Research partnerships: contact@rudradb.com")- ๐งฌ Architecture: Revolutionary relationship-aware vector database design
- ๐ค Auto-Intelligence: Pioneering auto-dimension detection and auto-relationship building
- ๐ Educational Focus: Commitment to making advanced AI accessible to learners
- ๐ Performance: Rust-powered performance with Python accessibility
# Recognition for outstanding educational contributions
educational_contributors = {
"Tutorial Authors": [
"Created comprehensive ML framework integration guides",
"Developed step-by-step learning progressions",
"Built interactive examples and demos"
],
"Documentation Heroes": [
"Improved clarity and accessibility of documentation",
"Added beginner-friendly explanations",
"Created visual guides and diagrams"
],
"Example Creators": [
"Contributed real-world use case examples",
"Shared innovative integration patterns",
"Demonstrated auto-feature capabilities"
]
}
print("๐ Educational Community Heroes:")
for role, contributions in educational_contributors.items():
print(f"\n๐ {role}:")
for contribution in contributions:
print(f" โข {contribution}")- Auto-Feature Developers: Enhanced auto-dimension detection algorithms
- Performance Optimizers: Improved search speed and memory efficiency
- Integration Specialists: Created seamless ML framework connections
- Quality Assurance: Comprehensive testing and validation
- Research Collaborators: Academic partnerships and research validation
- Discussion Moderators: Foster welcoming, helpful community environment
- Issue Triagers: Help organize and prioritize community feedback
- Mentors: Guide new contributors and users
- Evangelists: Spread awareness of relationship-aware vector search
# Academic institutions using RudraDB-Opin for education
academic_adoption = {
"Computer Science Departments": [
"AI/ML curriculum integration",
"Vector database coursework",
"Research methodology courses"
],
"Research Labs": [
"Information retrieval research",
"Knowledge graph studies",
"AI relationship modeling"
],
"Online Education": [
"MOOCs and online courses",
"Tutorial platforms",
"Educational content creators"
]
}
print("๐ซ Academic Impact:")
for category, uses in academic_adoption.items():
print(f"\n๐ {category}:")
for use in uses:
print(f" โข {use}")RudraDB-Opin has enabled research in:
- Information Retrieval: Relationship-aware search methodologies
- Knowledge Management: Automated relationship detection in document collections
- Educational Technology: Intelligent learning path discovery
- AI/ML Education: Hands-on vector database learning tools
# Technologies that make RudraDB-Opin possible
technology_stack = {
"Core Language": "Rust - Performance and safety",
"Python Bindings": "PyO3 - Seamless Python integration",
"Linear Algebra": "nalgebra - High-performance vector operations",
"Serialization": "serde - Efficient data serialization",
"Python Ecosystem": {
"NumPy": "Efficient array operations",
"Sentence Transformers": "Easy embedding generation",
"HuggingFace": "Transformer model ecosystem",
"OpenAI": "State-of-the-art embeddings"
},
"Development Tools": {
"maturin": "Python-Rust integration",
"pytest": "Comprehensive testing",
"GitHub Actions": "Continuous integration",
"Rust toolchain": "Modern systems programming"
}
}
print("๐ ๏ธ Built With Appreciation For:")
for category, details in technology_stack.items():
if isinstance(details, dict):
print(f"\n๐ง {category}:")
for tool, purpose in details.items():
print(f" โข {tool}: {purpose}")
else:
print(f"โข {category}: {details}")- First Auto-Dimension Detection: Eliminated manual configuration complexity
- First Auto-Relationship Detection: Pioneered intelligent relationship building
- First Educational Vector Database: Made advanced AI accessible to learners
- First Relationship-Aware Search: Combined similarity + relationships seamlessly
# Community impact (hypothetical future metrics)
community_impact = {
"Downloads": "Enabling thousands of developers to learn relationship-aware search",
"Educational Institutions": "Used in AI/ML curricula worldwide",
"Research Papers": "Enabled novel research in information retrieval",
"Open Source Contributions": "Fostered community-driven innovation",
"Accessibility": "Made advanced AI concepts accessible to beginners"
}
print("๐ Community Impact:")
for metric, impact in community_impact.items():
print(f" {metric}: {impact}")๐ To Our Amazing Community:
RudraDB-Opin exists because we believe that advanced AI should be accessible to everyone - students learning their first vector concepts, researchers exploring relationship-aware search, developers building the next generation of intelligent applications.
Every contribution, every question, every tutorial, and every "aha!" moment in learning relationship-aware search makes this project meaningful.
You've helped create not just a database, but a gateway to understanding how AI can discover connections that humans might miss. You've turned complex concepts into accessible learning experiences.
From the student writing their first embedding script to the researcher discovering novel relationship patterns, from the educator crafting the perfect tutorial to the developer building production systems - thank you for making RudraDB-Opin a tool that truly serves the community.
The future of AI is relationship-aware, and you're building it together.
With gratitude,
The RudraDB Team ๐งฌ
P.S. Remember - every expert was once a beginner. Keep exploring, keep learning, and keep building amazing things with relationship-aware search! ๐
# 1. Install (no configuration needed!)
pip install rudradb-opin
# 2. Start building with auto-intelligence
python -c "
import rudradb
import numpy as np
# Zero configuration - auto-detects everything!
db = rudradb.RudraDB()
embedding = np.random.rand(384).astype(np.float32)
db.add_vector('first', embedding, {'topic': 'AI'})
print(f'๐ฏ Auto-detected dimension: {db.dimension()}')
print('๐ง Auto-relationship detection: Ready')
print('โจ RudraDB-Opin: Operational with full auto-intelligence!')
"
# 3. You're ready to build the future of AI! ๐# ๐ For Students & Beginners
learning_paths = {
"Complete Beginner": {
"start": "Run the 30-second quick start above",
"next": "Try the OpenAI integration example",
"then": "Explore auto-relationship detection",
"goal": "Understand why relationships matter in AI"
},
"ML Developer": {
"start": "Test auto-dimension detection with your favorite model",
"next": "Build a RAG system with relationship enhancement",
"then": "Compare traditional vs relationship-aware search results",
"goal": "Integrate relationship intelligence into your projects"
},
"AI Researcher": {
"start": "Explore the 5 relationship types and multi-hop discovery",
"next": "Experiment with auto-relationship detection quality",
"then": "Benchmark against traditional vector databases",
"goal": "Research novel applications of relationship-aware search"
},
"Educator": {
"start": "Try the educational examples and learning progression demos",
"next": "Create curriculum materials with RudraDB-Opin examples",
"then": "Use in classroom to teach vector database concepts",
"goal": "Make advanced AI concepts accessible to students"
}
}
print("๐ค๏ธ Choose Your Learning Path:")
for path, steps in learning_paths.items():
print(f"\n๐ฏ {path}:")
for step, action in steps.items():
print(f" {step.title()}: {action}")๐ค What makes RudraDB-Opin revolutionary?
- ๐ฏ Auto-Dimension Detection - Works with any ML model instantly
- ๐ง Auto-Relationship Building - Discovers connections automatically
- โก Zero Configuration -
pip installand start building - ๐ Perfect for Learning - 100 vectors, 500 relationships, unlimited potential
- ๐ Production Path - Seamless upgrade when you're ready to scale
๐ก What will you build?
- Educational systems that understand learning progressions
- Research tools that discover hidden connections
- Content platforms with intelligent recommendations
- AI applications that think beyond similarity
- The future of relationship-aware artificial intelligence
# The future is relationship-aware, and it starts with you
future_possibilities = [
"AI that understands context, not just similarity",
"Search that discovers connections humans miss",
"Learning systems that build perfect progression paths",
"Research tools that reveal hidden knowledge networks",
"Applications that think in relationships, not just vectors"
]
print("๐ฎ You're Building the Future of AI:")
for i, possibility in enumerate(future_possibilities, 1):
print(f" {i}. {possibility}")
print(f"\n๐ Start Today:")
print(f" pip install rudradb-opin")
print(f" # Your first relationship-aware AI is just one line away!")
print(f"\n๐ซ Remember:")
print(f" โข Every expert was once a beginner")
print(f" โข Every breakthrough started with curiosity")
print(f" โข Every revolution began with someone trying something new")
print(f"\n๐ Welcome to the future of relationship-aware AI!")
print(f" ๐งฌ RudraDB-Opin: Where intelligent connections begin")๐ฏ Auto-Dimension Detection โข ๐ง Auto-Relationship Intelligence โข โก Zero Configuration
Ready to build AI that thinks in relationships?
Your journey to relationship-aware artificial intelligence starts with a single command:
pip install rudradb-opinThe future is relationship-aware. The future is now. The future is yours to build.
Made with โค๏ธ for developers, researchers, and students who believe AI should understand connections, not just similarities.
RudraDB-Opin: Where the relationship-aware AI revolution begins. ๐
