This repository contains examples of low-level platform-independent drivers for STMicroelectronics sensors. Sensor drivers and examples are written in Rust programming language.
The STMicroelectronics naming convention for driver repositories is:
PARTNUMBER-rs(e.g. lsm6dsv16x-rs) for low-level platform-independent drivers (PID)
This repository is structured with a folder for each sensor driver, named xxxxxxx-rs, where xxxxxxx is the sensor part number.
Another folder, named util, does not follow the above naming convention. It contains other useful resources such as libraries and crates. To clone the complete content of this folder, use the following command:
git clone --recursive https://github.com/STMicroelectronics/st-mems-rust-drivers.git
Every sensor driver folder contains the following:
xxxxxxx-rs: This folder is hosted as a submodule repository and published as a standalone crate on the crates.io. Documentation can be found on the corresponding crates.io page or generated locally using the command:cargo doc.xxxxxxx-rs/examples: This folder contains self-contained example projects to test the sensor. It may be necessary to modify the pin configuration or the I2C/SPI address as needed. The folder name of each example includes the board used to test the sensor.xxxxxxx-rs/README: Contains additional info about the specific driver.
A template is available in the util folder to help get started quickly with these drivers. The cargo-generate tool may be used to configure a basic project environment by running:
cargo generate --git https://github.com/STMicroelectronics/st-mems-rust-drivers util/st-templateThis template allows customization of the starting project by selecting the desired Nucleo board, framework (Embassy or stm32-rs), and sensor. It also includes examples showing how to use I2C communication.
The driver is platform-independent and exposes both asynchronous and blocking APIs:
- The asynchronous API is enabled by default.
- The blocking API is available via the
blockingfeature. If used alone, the default features can be disabled (asynchronous API).
Your Cargo.toml should look like (using LSM6DSV16X as example sensor):
[dependencies]
# Async (default)
lsm6dsv16x-rs = "2.0.0"
# OR: only blocking API
# lsm6dsv16x-rs = { version = "2.0.0", default-features = false, features = ["blocking"] }To use it on a general configuration, you need to:
- Set up the sensor hardware bus (e.g., SPI or I2C), and DMA if asynchronous API is used.
- Provide the configured bus instance to the sensor library.
- When necessary, configure the interrupt pin and implement platform-specific delay functions.
Typically, the code can be used as presented in the example folder. However, to generalize the driver, a BusOperation trait is used. This allows for a generic bus that could be either I2C or SPI. The util folder wraps the trait in the st-mems-bus crate, enabling the same trait to be shared across all sensors and used simultaneously without redefining the trait. The configuration depends on the framework being used.
By default you use the asynchronous API:
use lsm6dsv16x_rs::asynchronous as lsm6dsv16x;
use lsm6dsv16x::prelude::*;To use the blocking API instead:
use lsm6dsv16x_rs::blocking as lsm6dsv16x;
use lsm6dsv16x::prelude::*;Below is minimal example using LSM6DSV16X as sensor reference. Implementation for Embassy (Async) and STM32 frameworks are provided:
-
Embassy Async I2C:
use embassy_stm32::{bind_interrupts, Config}; use embassy_stm32::exti::ExtiInput; use embassy_stm32::gpio::{Input, Pull}; use embassy_stm32::i2c::{self, Config as I2cConfig, I2c}; use embassy_stm32::time::khz; use embassy_stm32::peripherals::{self, USART2}; use embassy_time::Delay; // Async import use lsm6dsv16x_rs::asynchronous as lsm6dsv16x; // if blocking feature is enabled // use lsm6dsv16x_rs::blocking as lsm6dsv16x; use lsm6dsv16x::prelude::*; bind_interrupts!(struct Irqs { USART2 => BufferedInterruptHandler<USART2>; I2C1_EV => i2c::EventInterruptHandler<peripherals::I2C1>; I2C1_ER => i2c::ErrorInterruptHandler<peripherals::I2C1>; }); // main section #[embassy_executor::main] async fn main(_spawner: Spawner) { let p = embassy_stm32::init(Default::default()); let i2c: I2c<_> = I2c::new( p.I2C1, // TBD: define the I2C channel as needed p.PB8, // TBD: define the scl route p.PB9, // TBD: define the sda route Irqs, p.DMA1_CH6, // TBD: provide tx Dma if available p.DMA1_CH0, // TBD: provide rx Dma if available khz(400), I2cConfig::default(), ); let mut delay = Delay; let interrupt_pin = p.PC0; // TBD: define the interrupt pin accordingly let exti = p.EXTI0; // TBD: define the EXTI related to the interrupt pin let interrupt = Input::new(interrupt_pin, Pull::None); let mut interrupt = ExtiInput::new(interrupt, exti); let i2c_addr = lsm6dsv16x::I2CAddress::I2cAddH; // TBD: depends on whether SDA0 is high or not; see sensor's datasheet. let mut sensor = Lsm6dsv16x::new_i2c(i2c, i2c_addr, delay).unwrap(); }
-
STM32 I2C (blocking):
use stm32f4xx_hal::{ i2c::{DutyCycle, I2c, Mode}, pac, prelude::*, serial::{config::Config, Serial}, }; // Blocking import use lsm6dsv16x_rs::blocking as lsm6dsv16x; // If your project uses an async runtime on STM32, you can instead use: // use lsm6dsv16x_rs::asynchronous as lsm6dsv16x; use lsm6dsv16x::prelude::*; // main section #[entry] fn main() -> ! { let dp = pac::Peripherals::take().unwrap(); let cp = cortex_m::Peripherals::take().unwrap(); let rcc = dp.RCC.constrain(); let clocks = rcc.cfgr.use_hse(8.MHz()).freeze(); let mut delay = cp.SYST.delay(&clocks); let tim1 = dp.TIM1.delay_us(&clocks); let gpiob = dp.GPIOB.split(); let gpioa = dp.GPIOA.split(); let scl = gpiob.pb8; // TBD: define the scl pin let sda = gpiob.pb9; // TBD: define the sda pin let i2c = I2c::new( dp.I2C1, (scl, sda), Mode::Standard { frequency: 400.kHz(), }, &clocks, ); let i2c_addr = lsm6dsv16x::I2CAddress::I2cAddH; // TBD: depends on whether SDA0 is high or not; see sensor's datasheet. let mut sensor = Lsm6dsv16x::new_i2c(i2c, i2c_addr, tim1).unwrap(); }
-
Embassy Async SPI
use core::cell::RefCell; use static_cell::StaticCell; use embassy_sync::blocking_mutex::NoopMutex; use embassy_time::{Delay, Duration, Timer, WithTimeout}; use embassy_time::Delay; use embedded_hal_bus::spi::ExclusiveDevice as SpiDevice; // or the actual type used use embassy_stm32 as hal; use hal::gpio::{Level, Output, Speed}; use hal::spi::{Spi, Config as SpiConfig}; use hal::{bind_interrupts, peripherals}; // Async import (default) use lsm6dsv16x_rs::asynchronous as lsm6dsv16x; // If blocking feature is enabled and you want blocking API instead: // use lsm6dsv16x_rs::blocking as lsm6dsv16x; use lsm6dsv16x::prelude::*; // Shared SPI bus (async) static SPI_BUS: StaticCell<NoopMutex<RefCell<Spi<'static, peripherals::SPI1>>>> = StaticCell::new(); // main section #[embassy_executor::main] async fn main(_spawner: Spawner) { let p = embassy_stm32::init(Default::default()); let mut config = SpiConfig::default(); config.mode = MODE_3; // TBD: define MODE config.frequency = embassy_stm32::time::Hertz(100_000); // TBD: define frequency // Async SPI constructor — replace DMA types if you want DMA-based transfers let spi = Spi::new( p.SPI1, // SPI peripheral p.PA1, // SCK - TBD: choose correct pin p.PA7, // MOSI - TBD p.PA6, // MISO - TBD config, ); let mut delay = Delay; let bus = NoopMutex::new(RefCell::new(spi)); let bus = SPI_BUS.init(bus); let cs = Output::new(p.PA4, Level::High, Speed::VeryHigh); // TBD: define Chip select (CS) settings let spi_dev = SpiDevice::new(bus, cs); // For the async API this will typically be used inside an async context: // let mut sensor = lsm6dsv16x::Lsm6dsv16x::new_spi(spi_dev).await?; let mut sensor = Lsm6dsv16x::new_spi(spi_dev, delay); }
-
STM32 SPI:
use stm32f4xx_hal::spi::{Mode, NoMiso}; use embedded_hal_bus::spi::ExclusiveDevice; use stm32f4xx_hal::{ gpio::{self, Edge, Input}, i2c::{I2c}, spi::{Spi, Polarity, Phase}, pac::{self, interrupt}, prelude::*, serial::{config::Config, Serial}, }; // Blocking import use lsm6dsv16x_rs::blocking as lsm6dsv16x; // If your project uses an async runtime on STM32, you can instead use: // use lsm6dsv16x_rs::asynchronous as lsm6dsv16x; use lsm6dsv16x::prelude::*; // main section #[entry] fn main() -> ! { let dp = pac::Peripherals::take().unwrap(); let cp = cortex_m::Peripherals::take().unwrap(); let rcc = dp.RCC.constrain(); let clocks = rcc.cfgr.use_hse(8.MHz()).freeze(); let mut delay = cp.SYST.delay(&clocks); let tim1 = dp.TIM1.delay_us(&clocks); let gpiob = dp.GPIOB.split(); let gpioa = dp.GPIOA.split(); // SPI pins: SCK, MISO, MOSI let sck = gpioa.pa5.into_alternate(); // TBD:: define the sck pin let miso = gpioa.pa6.into_alternate(); // TBD:: define the miso pin let mosi = gpioa.pa7.into_alternate(); // TBD:: define the mosi pin let scl = gpiob.pb8; // TBD: define the scl pin let sda = gpiob.pb9; // TBD: define the sda pin // Chip Select (CS) pin let mut cs = gpiob.pb6.into_push_pull_output(); // TBD: define the gpio pin cs.set_high(); // Deselect by default let spi = Spi::new( dp.SPI1, // TBD: define which SPIx to use (sck, miso, mosi), Mode { polarity: Polarity::IdleLow, phase: Phase::CaptureOnFirstTransition, }, 2.MHz(), &clocks, ); // Acquire SPI channel as Exclusive let spi_dev = ExclusiveDevice::new_no_delay(spi, cs).unwrap(); let mut sensor = Lsm6dsv16x::new_spi(spi_dev, tim1); }
- A rust compiler with a toolchain targeting the MCU.
- Each sensor specifies a Minimum Supported Rust Version (MSRV) to ensure compatibility and successful compilation.
Examples are written for STM32 Microcontrollers using the NUCLEO_F401RE as primary platform. However, they can also serve as a guideline for every other platforms.
When using supported STMicroelectronics evaluation boards, the schematics provide information about which pins to use to setup the I2C or SPI communication with the sensor.
More information: http://www.st.com
Copyright (C) 2025 STMicroelectronics