-
Ensure you have a Gurobi license;
-
Install all dependencies by python package manager (e.g.,
uv):uv sync
-
python gen.py special- Generate scenarios for experiment 1, 2 and 3
- Each scenario is a representative scenario and has only one instance
- All generated scenarios are store in folder
special-mapf-scen
-
python gen.py large- Generate scenarios for experiment 4 and 5
- Each scenario has 10 instances
- All generated scenarios are store in folder
large-mapf-scen
Run MICP, MILP, MINLP
- Experiment 1:
python expr.py -e special -dt 0.2 -t 10 -a micppython expr.py -e special -dt 0.2 -t 10 -a milppython expr.py -e special -dt 0.2 -t 10 -a minlp
- Experiment 2:
python expr.py -e large -dt 0.2 -t 10 -a micppython expr.py -e large -dt 0.2 -t 10 -a milppython expr.py -e large -dt 0.2 -t 10 -a minlp
Result of instances are store in the corresponding data directory, e.g. large-mapf-scen/n4-10x10-swap/0-micp-UB.json.
@inproceedings{micp_mamp,
author = {Shizhe Zhao, Yongce Liu, Howie Choset and Zhongqiang Ren},
booktitle = {2025 IEEE/RSJ International Conference on Intelligent Robots and Systems},
title = {Mixed Integer Conic Programming for Multi-Agent Motion Planning in Continuous Space},
year = {2025},
code = {https://github.com/rap-lab-org/public_MICP_MAMP}
}