Skip to content

rap-lab-org/public_MICP_MAMP

Repository files navigation

Reproduce Experiments

Prepare

  1. Ensure you have a Gurobi license;

  2. Install all dependencies by python package manager (e.g., uv): uv sync

Generate scenario files

  • python gen.py special

    • Generate scenarios for experiment 1, 2 and 3
    • Each scenario is a representative scenario and has only one instance
    • All generated scenarios are store in folder special-mapf-scen
  • python gen.py large

    • Generate scenarios for experiment 4 and 5
    • Each scenario has 10 instances
    • All generated scenarios are store in folder large-mapf-scen

Run experiment

Run MICP, MILP, MINLP

  • Experiment 1:
    • python expr.py -e special -dt 0.2 -t 10 -a micp
    • python expr.py -e special -dt 0.2 -t 10 -a milp
    • python expr.py -e special -dt 0.2 -t 10 -a minlp
  • Experiment 2:
    • python expr.py -e large -dt 0.2 -t 10 -a micp
    • python expr.py -e large -dt 0.2 -t 10 -a milp
    • python expr.py -e large -dt 0.2 -t 10 -a minlp

Result of instances are store in the corresponding data directory, e.g. large-mapf-scen/n4-10x10-swap/0-micp-UB.json.

Reference

@inproceedings{micp_mamp,
  author = {Shizhe Zhao, Yongce Liu, Howie Choset and Zhongqiang Ren},
  booktitle = {2025 IEEE/RSJ International Conference on Intelligent Robots and Systems},
  title = {Mixed Integer Conic Programming for Multi-Agent Motion Planning in Continuous Space},
  year = {2025},
  code = {https://github.com/rap-lab-org/public_MICP_MAMP}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages